top of page

Search Index

331 results found

  • The role of dopamine in the movement and the reward pathway | Scientia News

    What is it and what does it do? Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The role of dopamine in the movement and the reward pathway 14/07/25, 15:01 Last updated: Published: 21/09/24, 15:59 What is it and what does it do? Dopamine is a neurotransmitter produced mainly in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNPC) in the brain, exhibiting both excitatory and inhibitory effects in different brain pathways. Dopamine is important in mediating the mesolimbic and nigrostriatal pathways for reward and movement, respectively. Therefore, damage to dopaminergic neurones affects dopamine levels in the brain and can consequently result in diseases associated with abnormal dopamine levels. Movement The role of dopamine is vital in modulating the initiation of movement through both the direct and indirect pathways of the basal ganglia ( Figure 1 ). In the direct pathway, dopamine produced from the SNPC binds to the D1 Gs-coupled receptors in the striatum resulting in the activation of the intracellular signalling cascade. Activation of these receptors results in increased intracellular cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) levels, which control the modulation of ion channels, including calcium channels for further depolarisation of the striatal cells. The excitation of the striatum results in GABAergic inhibition of the globus pallidus internal segment (GPI) and the substantia nigra pars reticulata (SNPR). Hence, this results in the disinhibition of the thalamus, allowing for excitatory glutamatergic transmission to the motor cortex for the facilitation of movement. The activation of the striatum via D1 receptor stimulation can be supported by a study conducted by Gerfen et al. 2012 in which they concluded that PKA activates calcium voltage-gated 1 L-type calcium channels, resulting in depolarisation of striatal cells, which causes the enablement of movement via the direct pathway. However, in the indirect pathway, dopamine binds to D2 Gi-coupled receptors with a higher affinity than D1 receptors, causing inhibition of these receptors and their intracellular signalling cascades. Consequently, there is decreased inhibition of potassium channels by the second messengers, resulting in hyperpolarisation due to potassium efflux from the striatal cells. As the striatum is inactivated, this reduces the overall inhibitory effect of the indirect pathway on the thalamus, allowing for movement. Therefore, dopamine is critical for the normal functioning of humans by allowing them to control their movements for survival, for example, by pushing a ball away when it is about to hit them. Reward pathway The mesolimbic dopaminergic pathway ( Figure 2 ) is the most recognised reward pathway in the brain. This pathway contains the VTA, located in the midbrain, the nucleus accumbens (NA) and the tuberculum olfactorium (TO), located in the basal forebrain. The lateral regions of the VTA are the most abundant in A10 dopaminergic neurones in comparison to other regions of the VTA. These A10 neurones are activated in association with reward anticipation, for example, after exercising. The medial VTA dopaminergic neurones project to the core and medial shell regions of the NA, and the lateral VTA project towards the lateral shell region of the NA (figure 3). Thus, increasing dopamine levels in the NA and inducing the processing of the reward. Moreover, dopaminergic inputs from the VTA to the TO allow the individual to develop an odour preference for a specific stimulus due to motivation-oriented behaviour. Hence, this could be a reason why the anticipation of eating one's favourite food by evoking the memory of its smell is associated with the feeling of reward. Experiments conducted by FitzGerald et al. 2014 support my points regarding the role of the TO in the mesolimbic pathway. In their study, mice were given a choice of two different odours to choose from. The team noted activation of c-Fos neurones in the forebrain, indicating neuronal activity in this region, which is involved in reward motivation behaviour. Hence, allowing them to support the importance of the TO in odour processing and reward behaviour in the mice when choosing a more pleasurable odour. Eventually, projections from the TO and NA converge at the ventral pallidum, where the enrichment of reward-related learning occurs. Therefore, dopamine is essential for the initiation of the reward pathway in ensuring the continuation of reward behaviour when exposed to a specific stimulus and for survival due to the association of reproduction with reward. Conclusion In conclusion, dopamine is essential for the initiation of movement and in the reward pathway for normal human functioning and survival. Studies into aldehyde-dehydrogenase 1 in the SNPC have found that it protects dopaminergic neurones against neurodegeneration. Further studies will aid in understanding the mechanisms by which this enzyme is regulated and the actions by which it protects dopaminergic neurones in the SNPC. Written by Maria Z Kahloon Related articles: The dopamine connection between the gut and the brain / Interplay of hormones and microbiome / Types of movement Project Gallery

  • Germline gene therapy (GGT): its potential and problems | Scientia News

    A Scientia News Biology and Genetics collaboration Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Germline gene therapy (GGT): its potential and problems 09/07/25, 14:14 Last updated: Published: 21/01/24, 11:47 A Scientia News Biology and Genetics collaboration Introduction Genetic diseases arise when there are alterations or mutations to genes or genomes. In most acquired cases, mutations occur in somatic cells. However, when these mutations happen in germline cells (i.e. sperm and egg cells), they are incorporated into the genome of every cell. In other words, should this mutation be deleterious, all cells will have this issue. Furthermore, this mutation becomes inheritable. This is partly why most genetic diseases are complicated to treat and cure. Gene therapy is a concept that has been circulating among geneticists for some time. Indeed, addressing a disease directly from the genes that caused or promoted it has been an attractive and appealing avenue of therapies. The first successful attempt at gene therapy dates back to 1990, using retrovirus-derived vectors to transduce the T-lymphocytes of a 4-year-old girl with X-linked severe combined immunodeficiency disease (SCID-X1) with enzyme adenosine deaminase (ADA) deficiency. The trial was a great success, eliminating the girl's disease and marking a great milestone in the history of genetics. Furthermore, the success of viral vectors also opened new avenues to gene editing, such as zinc finger nucleases and the very prominent CRISPR-Cas9. For example, in mid-November 2023, the UK Medicines and Healthcare products Regulatory Agency or MHRA approved the CRISPR-based gene therapy, Casgevy, for sickle cell disease and β-thalassemia. It is clear that the advent of gene therapies significantly shaped the treatment landscape and our approach to genetic disorders. However, for most of gene therapy history, it is done almost exclusively on somatic cells or some stem cells, not germline cells. How it works As mentioned, inherited genetic disease-associated mutations are also present in germline cells or gametes. The current approach to gene therapy targets genes of some or very specific somatic or multipotent stem cells. For example, in the 1990 trial, the ADA-deficient SCID-X1 T-lymphocytes were targeted, and in recently approved Casgevy, the BCL11A erythroid-specific enhancer in hematopoietic stem cells. The methods involved in gene therapies also vary, each with advantages and limitations and carrying some therapeutic risks. Nevertheless, when aiming to treat genetic diseases, gene therapy should answer two things: how to do it and where. There are a few elucidated strategies of gene therapies. Unlike some popular beliefs, gene therapies do not always directly change or edit mutated genes. Instead, some gene therapies target enhancers or regulatory regions that control the expression of mutated genes. In other cases, such as in Casgevy, enhancers of a different subtype are targeted. By targeting or reducing BCL11A expression, Casgevy aims to induce the production of foetal haemoglobin (HbF), which contains the γ-globin chain as opposed to the defective β-chain in the adult haemoglobin (HbA) of sickle cell disease or β-thalassemia. Some gene therapies can also be done ex vivo or in vivo . Ex vivo strategies involve extracting cells from the body and modifying them in the lab, whilst in vivo strategies directly modify the cell without extraction (e.g. using viral/ non-viral vectors to insert genes). In essence, the list of strategies for gene therapies is growing, each with limitations and a promising prospect of tackling genetic diseases. These methods aim to “cure” genetic diseases in patients. However, the strategies mentioned above have all been researched using and, perhaps, made therapeutically for somatic or multipotent stem cells. Germline gene therapy (GGT), involves directly editing the genetic materials of germline cells or the egg and sperm cells before fertilisation. This means if it is done successfully, fertilisation of these cells will eliminate the disease phenotype from all cells of the offspring instead of only effector cells. Potentially, GGT may eradicate a genetic disease for all future generations. Therefore, it is an appealing alternative to human embryo editing, as it achieves similar or the same result without the need to modify an embryo. However, due to its nature, its advantage may also be its limitation. Ethical issues GGT has the potential to cure genetic disorders within families. However, because it involves editing either the egg or sperm cells before fertilisation, there are prominent ethical issues associated with this method, like the use of embryos for research and many more. Firstly, GGT gives no room for error. Mistakes during the gene modification process could cause systemic side effects or a harsher disease than the one initially targeted, leading to a multigenerational effect. For example, if parents went to a clinic to check if one/both their germ cells have a gene coding for proteins implicated in cystic fibrosis, an off-target mistake during GGT may lead to their child developing Prader-Willi Syndrome or other hereditary disorders caused by editing out significant genes for development. Secondly, an ecological perspective asserts that the current human gene pool, an outcome of many generations of natural selection, could be weakened by germline gene editing. Also, there is the religious perspective, where editing embryos goes against the natural order of how god created living creatures as they should be, where their natural phenotypes are “assigned” for when they are alive. Another reason GGT may be unethical is it leads to eugenics or creating “designer babies”. These are controversial ideas dating back to the late 19th century, where certain traits are “better” than others. This implies they should appear in human populations while individuals without them should be sterilised/killed off. For instance, it is inconceivable to forget the Nazi Aktion T4 program, which sought to murder disabled people because they were seen as “less suitable” for society. Legal and social issues Eugenics is notorious today because of its history. Genetic counselling may be seen like this as one possible outcome may be parents who end pregnancies if their child inherits a genetic disease. Moreover, understanding GGT’s societal influences is crucial, so clinical trial designs must consider privacy, self-ownership, informed consent and social justice. In China, the public’s emotional response to GGT in 2018 was mainly neutral, as shown in Figure 1, but some of the common “hot words” when discussed were ‘mankind’, ‘ethics’, and ‘law’. With this said, regulations are required with other nations for a wider social consensus on GGT research. In other countries, there are stricter rules for GGT. it is harder to conduct experiments using purposely formed/altered human embryos with inheritable mutations in the United States because the legal outcomes can include prison time and $100,000 fines. Furthermore, when donors are required, they must be fairly compensated, and discussing methodologies is crucial because there are issues on how they can impact men and women. South Africa has two opposing thoughts on GGT or gene editing. Bioconservatism has worries about genetic modification and asserts its restrictions, while bioliberalism is receptive to this technology because of the possible benefits. Likewise, revisions to the current regulations are suggested, such as rethinking GGT research or a benefit-risk analysis for the forthcoming human. Conclusion Overall, gene therapies have transformed the therapeutic landscape for genetic diseases. GGT is nevertheless a unique approach that promises to completely cure a genetic disease for families without the need to edit human embryos. However, GGT’s prospects may do more harm than good because its therapeutic effects are translated systemically and multigenerationally. On top of that, controversial ideas such as designer babies can arise if GGT is pushed too far. Additionally, certain countries have varying regulations due to cultural attitudes towards particular scientific innovations and the beginning of life. Reflecting on the ethical, legal and social issues, GGT is still contentious and probably would not be a prominent treatment option anytime soon for genetic diseases. Written by Sam Jarada and Stephanus Steven Introduction, and How it works by Stephanus Ethical issues, and Legal and social issues by Sam Conclusion by Sam and Stephanus Related article: Monkey see, monkey clone References: Cavazzana-Calvo, M. et al. (2000) ‘Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease’, Science , 288(5466), pp. 669–672. doi:10.1126/science.288.5466.669. Demarest, T.G. and Biferi, M.G. (2022) ‘Translation of gene therapy strategies for amyotrophic lateral sclerosis’, Trends in Molecular Medicine , 28(9), pp. 795–796. doi:10.1016/j.molmed.2022.07.001. Frangoul, H. et al. (2021) ‘CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia’, New England Journal of Medicine , 384(3), pp. 252–260. doi:10.1056/nejmoa2031054. AGAR, N. (2018). Why We Should Defend Gene Editing as Eugenics. Cambridge Quarterly of Healthcare Ethics, 28(1), pp.9–19. doi: https://doi.org/10.1017/s0963180118000336 . de Miguel Beriain, I., Payán Ellacuria, E. and Sanz, B. (2023). Germline Gene Editing: The Gender Issues. Cambridge Quarterly of Healthcare Ethics, 32(2), pp.1–7. doi: https://doi.org/10.1017/s0963180122000639 . Genome.gov . (2021). Eugenics: Its Origin and Development (1883 - Present). [online] Available at: https://www.genome.gov/about-genomics/educational-resources/timelines/eugenics#:~:text=Discussions%20of%20eugenics%20began%20in . Johnston, J. (2020). Budgets versus Bans: How U.S. Law Restricts Germline Gene Editing. Hastings Center Report, 50(2), pp.4–5. doi: https://doi.org/10.1002/hast.1094 . Kozaric, A., Mehinovic, L., Stomornjak-Vukadin, M., Kurtovic-Basic, I., Catibusic, F., Kozaric, M., Mesihovic-Dinarevic, S., Hasanhodzic, M. and Glamuzina, D. (2016). Diagnostics of common microdeletion syndromes using fluorescence in situ hybridization: single center experience in a developing country. Bosnian Journal of Basic Medical Sciences, [online] 16(2). doi: https://doi.org/10.17305/bjbms.2016.994 . Luque Bernal, R.M. and Buitrago BejaranoR.J. (2018). Assessoria genética: uma prática que estimula a eugenia? Revista Ciencias de la Salud, 16(1), p.10. doi: https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.6475 . Nielsen, T.O. (1997). Human Germline Gene Therapy. McGill Journal of Medicine, 3(2). doi: https://doi.org/10.26443/mjm.v3i2.546 . Niemiec, E. and Howard, H.C. (2020). Germline Genome Editing Research: What Are Gamete Donors (Not) Informed About in Consent Forms? The CRISPR Journal, 3(1), pp.52–63. doi: https://doi.org/10.1089/crispr.2019.0043 . Peng, Y., Lv, J., Ding, L., Gong, X. and Zhou, Q. (2022). Responsible governance of human germline genome editing in China. Biology of Reproduction, 107(1). doi: https://doi.org/10.1093/biolre/ioac114 . Shozi, B. (2020). A critical review of the ethical and legal issues in human germline gene editing: Considering human rights and a call for an African perspective. South African Journal of Bioethics and Law, 13(1), p.62. doi: https://doi.org/10.7196/sajbl.2020.v13i1.00709 . Thaldar, D., Botes, M., Shozi, B., Townsend, B. and Kinderlerer, J. (2020). Human germline editing: Legal-ethical guidelines for South Africa. South African Journal of Science, 116(9/10). doi: https://doi.org/10.17159/sajs.2020/6760 . Zhang, D. and Lie, R.K. (2018). Ethical issues in human germline gene editing: a perspective from China. Monash Bioethics Review, 36(1-4), pp.23–35. doi: https://doi.org/10.1007/s40592-018-0091-0 . Project Gallery

  • The secret to disarming plant pathogens revealed | Scientia News

    Channel-blocking nanoparticles as a potential solution to plant diseases Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The secret to disarming plant pathogens revealed Last updated: 17/07/25, 10:55 Published: 27/03/25, 08:00 Channel-blocking nanoparticles as a potential solution to plant diseases Unravelling the role of bacterial proteins in plant diseases! Disarming plant diseases one protein at a time! Scientists may have found a means to neutralise them, saving farmers $220 billion in yearly crop losses. The impact of plant diseases on global food production Bacteria have long been known to wreak havoc on crops, threatening our food supply and causing substantial economic losses. For over two decades, biologist Sheng-Yang He and his dedicated team have been delving into the mysterious world of bacterial proteins, seeking to unravel their role in plant diseases that plague countless crops worldwide. Finally, a breakthrough has been achieved after years of tireless research and collaboration. In a groundbreaking study published in the esteemed journal Nature, he and his colleagues have uncovered the mechanisms by which these proteins induce disease in plants and devised a method to neutralise their harmful effects. Understanding the mechanism of harmful proteins Their investigation focused on a group of injected proteins called AvrE/DspE, responsible for causing diseases ranging from brown spots in beans to fire blight in fruit trees. Despite their significance, the exact workings of these proteins have long remained elusive. The researchers discovered that these proteins adopt a unique 3D structure resembling a tiny mushroom with a cylindrical stem through cutting-edge advancements in artificial intelligence and innovative experimental techniques. Intriguingly, this structure resembled a straw, leading the team to hypothesise that the proteins create channels in plant cells, enabling the bacteria to extract water from the host during infection. Further investigation into the 3D model of the fire blight protein revealed that its hollow inner core contains many proteins from the AvrE/DspE family. These proteins were found to suppress the plant's immune system and induce dark water-soaked spots on leaves, the telltale signs of infection. However, armed with this newfound knowledge, the researchers sought to develop a strategy to disarm these proteins and halt their destructive effects. They turned to poly(amidoamine) dendrimers (PAMAM), tiny spherical nanoparticles with precise diameters that can be tailored in the lab. By experimenting with different sizes, they identified a nanoparticle that effectively blocked the water channels formed by the bacterial proteins. Application of nanoparticles in blocking water channels In a remarkable series of experiments, the researchers treated frog eggs engineered to produce the water channel protein with these channel-blocking nanoparticles. The results were astounding—the eggs no longer swelled with water and remained unaffected. Similarly, infected Arabidopsis plants treated with the nanoparticles significantly reduced pathogen concentrations, effectively preventing disease development. This breakthrough discovery offers a glimmer of hope in the battle against plant diseases, which cause immense losses in global food production. Plants are responsible for 80% of the world's food supply, and protecting them from pathogens and pests is crucial for ensuring food security. The team's groundbreaking research on plant pathogens and their harmful proteins opens up new possibilities for combating various plant diseases. The implications of their findings extend far beyond a single crop or disease, offering novel approaches to address a wide range of plant diseases. By understanding the mechanism by which bacterial proteins, such as AvrE and DspE, cause diseases in plants, researchers can now explore strategies to disarm these proteins and prevent their harmful effects. The team discovered that these proteins act as water channels, allowing bacteria to invade plant cells and create a saturated environment that promotes their growth. This insight led to the development of channel-blocking nanoparticles, effectively preventing bacteria from infecting plants and causing disease symptoms. Using precise nanoparticles, such as PAMAM dendrimers, to block plant pathogens' water channels represents a promising avenue for crop protection. Figure 1: this figure shows that PAMAM are very branched polymers that are very small, have a low polydispersity index, and have a lot of active amine functional groups. They have multiple modifiable surface functionalities, facilitating the conjugation of ligands for cancer targeting, imaging, and therapy. PAMAM dendrimers also have solubilisation, high drug encapsulation, and passive targeting ability, contributing to their therapeutic success. Cancer researchers are excited about their potential as drug carriers and non-viral gene vectors, with a focus on diagnostic imaging applications. These nanoparticles can be tailored to specific diameters, allowing for targeted disruption of the bacterial proteins' channels. The nanoparticles effectively render the bacteria harmless by interfering with the proteins' ability to create a moist environment within plant cells. This innovative approach has shown success in combating diseases caused by pathogens like Pseudomonas syringae and Erwinia amylovora . Implications for global food production and food security The potential impact of this research on global food production is immense. Plant diseases result in significant crop losses, amounting to over 10% of global food production annually. This translates to a staggering $220 billion economic loss worldwide. Developing strategies to disarm harmful proteins and protect crops from diseases can mitigate these losses and enhance food security. Furthermore, the team's findings highlight the critical role of plant biology research in addressing global challenges. Plants provide 80% of our food, making their health and protection crucial for sustaining our growing population. By understanding how pathogens infect plants and developing innovative solutions, we can safeguard our food supply and reduce the economic impact of crop diseases. Experimental results and a promising outlook The researchers aim to further investigate the interaction between channel-blocking nanoparticles and bacterial proteins. By visualising the structures and mechanisms involved, they hope to refine their designs and develop even more effective strategies for crop protection. Additionally, artificial intelligence, such as the AlphaFold2 programme, has proven instrumental in predicting the 3D structures of complex proteins. Continued advancements in AI technology will undoubtedly contribute to further breakthroughs in understanding and combating plant diseases. By unravelling the mechanisms by which harmful proteins cause diseases in plants and developing innovative strategies to disarm them, we can protect global food production and enhance food security. The implications of this research extend beyond a single crop or disease, paving the way for novel approaches to combat a wide range of plant diseases and safeguard our agricultural systems. Conclusion The groundbreaking research conducted by biologist Sheng-Yang He and his team offer hope in the fight against plant diseases. By revealing the mechanisms by which harmful proteins cause diseases in plants and developing innovative strategies to disarm them, they have paved the way for novel approaches to combat various plant diseases. This enhances food security and protects global food production, reducing economic losses and ensuring a sustainable future. With continued advancements in artificial intelligence and the development of precise nanoparticles, the possibilities for further breakthroughs in understanding and combating plant diseases are endless. By safeguarding our agricultural systems, we can secure the health of our crops and, ultimately, the well-being of our growing population. The implications of this research extend far beyond agriculture, offering new avenues for addressing global challenges and paving the way for a brighter and more resilient future. Figure 2: this figure shows a working model for the molecular actions of AvrE-family effectors in plants. AvrE-family effectors are water- and solute-permeable channels that change the osmotic and water potential and make an apoplast that is rich in water and nutrients for bacteria to grow in plant tissues that are infected. They can also engage host proteins to modulate AvrE-family channel properties or optimise pathogenic outcomes. Written by Sara Maria Majernikova Related articles: Digital innovation in rural farming / Nanomedicine / Mechanisms of pathogen evasion / Nanocarriers REFERENCE Kinya Nomura, Felipe Andreazza, Jie Cheng, Ke Dong, Pei Zhou, Sheng Yang He. Bacterial pathogens deliver water- and solute-permeable channels to plant cells. Nature , 2023; DOI: 10.1038/s41586-023-06531-5 Project Gallery

  • The impacts of global warming on dengue fever | Scientia News

    Global warming can lead to higher transmission rates of dengue fever Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The impacts of global warming on dengue fever Last updated: 12/06/25, 13:39 Published: 19/06/25, 07:00 Global warming can lead to higher transmission rates of dengue fever This is article no. 1 in a three-part series on the impacts of global warming on mosquito-borne Neglected Tropical Diseases (NTDs). Next article: malaria (coming soon). Introduction Dengue fever is a viral disease transmitted by two mosquitoes: Aedes aegypti and Aedes albopictus . These mosquitoes are called ‘vectors’. Symptoms of dengue fever include a sudden high fever and severe headaches, making it hard to diagnose. Transmission suitability is endemic, meaning the virus spreads where the conditions are suitable for the vectors to survive and reproduce for 10-12 months. This disease is endemic in the tropics, including much of Sub-Saharan Africa and Central Africa, Northern South America, Brazil, South and Southeast Asia, and parts of Northern Australia. The World Health Organisation (WHO) has stated that it is “the most important mosquito-borne viral disease in the world”. Dengue fever does not currently have a vaccine. There are many areas of transmission, and dengue fever impacts communities worse if they have weaker health systems. Severe dengue can be fatal, especially in children, who have a weaker immune system. Due to climate change and increasing temperatures, more areas will be habitable for the vectors in the future. This could lead to higher transmission rates of dengue fever. Researchers used a modelling approach using different datasets to make projections of the impact of changing temperatures and predict the future spread of dengue fever. They specifically looked at locations and months suitable for dengue transmission if conditions were suitable for both vectors. Method The researchers used temperature data from the Berkeley Earth Surface Temperatures dataset for the present day (2001-2020). They also used projected temperature data for 2050 based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) projections for the socio-economic pathway (SSP) 1-2.6 scenario and SSP5-8.5 scenario, as used in the Intergovernmental Panel on Climate Change Sixth Assessment Report. The SSP1-2.6 scenario is the best-case scenario and assumes international policy agreements and emissions reductions will be followed, limiting the average global temperature to 1.5 °C above pre-industrial levels. The SSP5-8.5 scenario is the “business as usual” scenario and assumes that continued fossil fuel use and development will occur. Researchers used the most recent climate projections from the CMIP6, which gave an up-to-date, holistic view of the impact of potential differences between climate change trajectories on vulnerable populations. This information can be used to support climate change mitigation strategies and disease prevention and control. Thermal limits for the mosquito vectors used in this study were 19.9 - 29.4 °C for Aedes aegypti and 21.3 - 34 °C for Aedes albopictus , since the vectors can only survive and reproduce within these temperatures. Modelling the thermal limits of both vectors, instead of just one, made the analysis more comprehensive. The researchers also applied an aridity mask using the Normalised Difference Vegetation Index (NDVI), which excluded areas too dry for mosquito survival and reproduction. They then applied the thermal limits and aridity mask to the climate data to predict areas with suitable conditions for the vectors and estimate the number of months suitable for transmission. Using aridity masks (previously only done with malaria) enhanced the model's accuracy because moisture is an important factor for mosquito breeding. Results Figure 1 shows that under the SSP1-2.6 (best-case) scenario, there will be new suitability for dengue transmission in temperate regions by 2050, lasting about 1 to 2 months. In addition, northwestern South America could see increases of up to 5 months of new suitability, and Eastern Africa up to 6 months of new suitability. In addition, eastern and southern Central America, central and northwestern South America, northern Australia, and parts of Southeast Asia are also becoming suitable for year-round transmission. Figure 2 shows that under the SSP5-8.5 (“business as usual”) scenario, areas will become suitable for year-round transmission in similar locations as under the SSP1-2.6 scenario by 2050. Dengue transmission suitability could increase by up to 6 months in Eastern Africa, and up to 10 months in parts of northwestern South America. Areas as far north as the Arctic Circle also have new suitability under this scenario. This demonstrates that climate change could result in the expansion of areas and the length of time during which dengue fever transmission is possible. Evaluation It’s essential to also acknowledge the study's limitations. For example, the model did not account for other variables impacting disease transmission, such as mosquito adaptation and extreme weather. The potential adaptation of mosquitoes and parasites to changing environmental conditions could alter transmission dynamics. In addition, extreme weather events, such as heavy rain, could eliminate breeding sites. Furthermore, the method of using modelling and projections is unreliable, because many things could change between now and 2050. For example, there could be temperature fluctuations, or temperatures could fall between SSP1-2.6 and SSP5-8.5, rather than being fixed in either scenario. This could affect the reliability of predicting future dengue fever transmission suitability. The study also did not include aridity projections under climate change scenarios. As future projections of NDVI are not currently available, NDVI values for 2020 were held constant for the 2050 projections. There will likely be changes in aridity by 2050, which will affect mosquito reproduction and dengue transmission. Nevertheless, this study's results are still important because they suggest that with increasing climate change, dengue fever transmission could increase, which would be a public health issue. Further listening and reading If you would like to know more about dengue fever, consider listening to this short 5-minute podcast from the World Health Organisation. If you would like to know more about the impacts of climate change on health, consider listening to this podcast , also from the World Health Organisation. If you would like to know more about the impacts of climate change on neglected tropical diseases (NTDs), consider reading the full open-access paper mentioned in this article . Written by Naoshin Haque Related articles: Potential vaccine for malaria / Correlation between HDI and mortality rate / Healthcare challenges during civil war in Sudan / Rising temperatures impacts Project Gallery

  • The Challenges in Modern Day Chemistry | Scientia News

    And can we overcome them? Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The Challenges in Modern Day Chemistry 11/07/25, 09:56 Last updated: Published: 24/02/24, 22:09 And can we overcome them? Chemistry, heralded as the linchpin of the natural sciences, serves as the veritable bedrock of our comprehension of the world and concurrently takes on a pivotal role in resolving the multifaceted global challenges that confront humanity. In the context of the modern era, chemistry has undergone a prodigious transformation, with research luminaries persistently challenging the fringes of knowledge and technological application. However, this remarkable trajectory is shadowed by a constellation of intricately interwoven challenges that mandate innovative and often paradigm-shifting solutions. This article embarks on a comprehensive exploration of the salient and formidable challenges that presently beset the discipline of contemporary chemistry. Sustainability and the Imperative of Green Chemistry The paramount challenge confronting modern chemistry pertains to the burgeoning and compelling imperative of environmental sustainability. The chemical industry stands as a colossal contributor to ecological degradation and the inexorable depletion of vital resources. Consequently, an exigent necessity looms: the development of greener and environmentally benign chemical processes. Green chemistry, an avant-garde discipline, is at the vanguard of this transformation, placing paramount emphasis on the architectural design of processes and products that eschew the deployment of hazardous substrates. Researchers within this sphere are diligently exploring alternative, non-toxic materials and propounding energy-efficient methodologies, thereby diminishing the ecological footprint intrinsic to chemical procedures. Energy Storage and Conversion at the Frontier In an epoch marked by the surging clamour for renewable energy sources such as photovoltaic solar panels and wind turbines, the exigency of efficacious energy storage and conversion technologies attains unparalleled urgency. Chemistry assumes a seminal role in the realm of advanced batteries, fuel cells, and supercapacitors. However, extant challenges such as augmenting energy density, fortifying durability, and prudently attenuating production costs remain obstinate puzzles to unravel. In response, a phalanx of researchers is actively engaged in the relentless pursuit of novel materials and the innovative engineering of electrochemical processes to surmount these complexities. Drug Resistance as a Crescendoing Predicament The advent of antibiotic-resistant bacterial strains and the irksome conundrum of drug resistance across diverse therapeutic spectra constitute a formidable quandary within the precincts of medicinal chemistry. With pathogenic entities continually evolving, scientists face the Herculean task of continually conceiving novel antibiotics and antiviral agents. Moreover, the unfolding panorama of personalised medicine and the realm of targeted therapies necessitate groundbreaking paradigms in drug design and precision drug delivery systems. The tantalising confluence of circumventing drug resistance whilst simultaneously obviating deleterious side effects represents a quintessential challenge in the crucible of contemporary chemistry. Ethical Conundrums and the Regulatory Labyrinth As chemistry forges ahead on its unceasing march of progress, ethical and regulatory conundrums burgeon in complexity and profundity. Intellectual property rights, the ethical contours of responsible innovation, and the looming spectre of potential malevolent misuse of chemical knowledge demand perspicacious contemplation and meticulously crafted ethical architectures. Striking an intricate and nuanced equilibrium between the imperatives of scientific advancement and the obligations of prudent stewardship of chemical discoveries constellates an enduring challenge that impels the chemistry community to unfurl its ethical and regulatory sails with sagacity and acumen. In conclusion... Modern-day chemistry, ensconced in its dynamic and perpetually evolving tapestry, stands as the lodestar of innovation across myriad industries while confronting multifarious global challenges. However, it does so against the backdrop of its own set of formidable hurdles, ranging from the exigencies of environmental responsibility to the mysteries of drug resistance and the intricate tangle of ethical and regulatory dilemmas. The successful surmounting of these multifaceted challenges mandates interdisciplinary collaboration, imaginative innovation, and an unwavering commitment to the prudential and ethically-conscious stewardship of the profound knowledge and transformative potential that contemporary chemistry affords. As humanity continues its inexorable march towards an ever-expanding understanding of the chemical cosmos, addressing these challenges is the sine qua non for an enduringly sustainable and prosperous future. Written by Navnidhi Sharma Related article: Green Chemistry Project Gallery

  • A love letter from outer space: Lonar Lake, India | Scientia News

    The lunar terrain Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link A love letter from outer space: Lonar Lake, India Last updated: 10/04/25, 10:54 Published: 10/04/25, 07:00 The lunar terrain Around 50,000 years ago, outer space gifted the earth with a crater that formed the foundations of the world’s third largest natural saltwater lake, situated within a flat volcanic area known as the Deccan Plateau. This resulted from a 2 million tonne meteorite tunnelling through the earth’s atmosphere at the velocity of 90,000km/hour and colliding into the Deccan Plateau. As time slipped away, pressure and heat melted the basalt rock tucked underneath the impact, and the accumulation of rainwater filled the crater with water. These foundations curated what is famously known today as the ‘Lonar Lake’. What is unique about the Lonar Lake is that it is the only meteorite-crater formed in basaltic terrain - synonymous to a lunar terrain. Additionally, the remnants bear similarities to the terrestrial composition of Mercury, which contains craters, basaltic rock and smooth plains resulting from volcanic activity. Many speculations have arisen to prove the theory of the crater forming from the impact of a meteorite. One such collaborative study conducted by The Smithsonian Institute of Washington D.C. USA, the Geological Survey of India and the US Geological Survey involved drilling holes at the bottom of the crater and scrutinising the compositions of rock samples sourced from the mining. When tested in the laboratory, it was found that the rock samples contained leftovers of the basaltic rock that were modified from the crater collision under high heat and pressure. In addition, shattered cone-shaped fractures, due to high velocity shock waves being transmitted into the rocks, were identified. These two observations align with the meteorite impact phenomenon. Additionally, along with its fascinating astronomical properties, scientists have been intrigued by the chemical composition of the lake within the crater. Its dark green colour results from the presence of the blue-green algae Spirulina. The water also has a pH of 10, making the water alkaline in nature, supporting the development of marine systems. One explanation for the alkalinity of the water is that it is a result of immediate sulphide formation, where the groundwater of meteorite origin contains CO2 undergoes a precipitation reaction with alkaline ions, leaving a carbonate precipitate with an alkaline nature. What is also striking about the composition of the water as well is its saline nature, which coexists with the alkaline environment - a rare phenomenon to occur in ecological sciences. The conception of the lake, from the matrimony of Earth with the debris within outer space, has left its imprints within the physical world. It's a love letter, written in basaltic stone and saline water, fostering innovation in ecology. The inscription of the meteorite’s journey within the crater has branched two opposing worlds, one originating millions of miles away from humans with one that resides in the natural grounds of our souls. Written by Shiksha Teeluck Related articles: Are aliens on Earth? / JWST REFERENCES Taiwade, V. S. (1995). A study of Lonar lake—a meteorite-impact crater in basalt rock. Bulletin of the Astronomical Society of India, 23, 105–111. Tambekar, D. H., Pawar, A. L., & Dudhane, M. N. (2010). Lonar Lake water: Past and present. Nature Environment and Pollution Technology, 9(2), 217–221. Project Gallery

  • The cognitive orchestra | Scientia News

    How music can manipulate our emotional processes Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The cognitive orchestra Last updated: 17/06/25, 11:21 Published: 26/06/25, 07:00 How music can manipulate our emotional processes Introduction Music has considerably always been a universal way of communicating. Every day, we are introduced to new genres and concepts despite the differences in language or musical techniques. As a result, psychology has increasingly researched music and its effects on human cognition. Music as a means of therapy The common way most people use music is to regulate their emotions. When we are feeling down, we are more than likely to choose a melancholic playlist over an upbeat one. It has been found that music aids in uplifting mood and reducing anxiety. Juslin and Sloboda (2010) demonstrated that people often choose to listen to music that links to how they are feeling in the moment or even how they desire to feel. With music being deemed a powerful emotional mechanism, music therapy has seen its benefits as a tool for regulating emotions. Thoma et al. (2013) support the idea of music being used for treating conditions like depression and PTSD, with their findings indicating that music listening impacts the psychobiological stress system. Listening to music prior to a stressful event predominantly affected the autonomic nervous system by recovering the nerves much faster, although the effects on the physiological stress and the endocrine (stress hormones) were not as noticeable. However, just as all forms of therapy are not generalisable to everyone, music therapy is not always an appropriate solution. The over-reliance on music to regulate feelings can lead to emotional avoidance and not addressing the initial cause of low mood. This leaves no room for solving the issues at hand. In the context of neurological rehabilitation, it was suggested that further controlled studies are needed to establish the efficacy of music in neurological recovery, and music-based interventions are emerging as promising rehabilitation strategies. Mental clarity or spiritual melodies? The benefits music can hold for our cognitive abilities are endless. Musical training in childhood, studied by Forgeard et al. (2008), is positively correlated with enhanced fine motor skills and non-verbal reasoning. Children were predicted to have much better cognitive flexibility and strengthened memory, outperforming the experimental control group. Another advantage music holds for cognitive abilities is making tasks easier to work with. Lesiuk (2005) conducted a study into the influence of music on mood and work performance. He introduced a ‘no music’ rule for workers in a software company, where they were prohibited from listening to music whilst working. The results demonstrated a predictable decrease in quality of work once music was abandoned, which workers were not habitually familiar with. Performance in quality of work remained poor in week 4, but managed to improve again when music was involved again during week 5. Although, it is important to note that music as a means of concentrating is not always beneficial. Lyrical songs can potentially act as a distractor when completing tasks that require verbal or visual memory, hindering our cognitive ability. Zulkurnaini et al. (2012) studied Lesiuk (2005) hypothesis, exposing participants to classical music and a verse from the Quran. By observing EEG signals, they found that listening to the Quran resulted in a more relaxed state compared to classical music. They also found that listening to the Quran increased the alpha band in the brain, which is associated with relaxation. Conclusion It is clear music is more than just a background track while completing daily errands. The influence it has on emotional well-being, memory and mood is vital to acknowledge. With evidence of positive correlations between cognitive productivity and listening to music, and neurological research of in-depth brain studies, the effects of music are much more prevalent to us. Future research should aim to look into the long-term effects on cognitive functioning, more specifically within clinical settings like neurorehabilitation. Written by Tania Khan Related article: Chemistry of emotions REFERENCES Schäfer, T., Sedlmeier, P., Städtler, C., & Huron, D. (2013). The psychological functions of music listening. Frontiers in Psychology, 4 , 511. Juslin, P. N., & Sloboda, J. A. (2010). Music and emotion. In P. N. Juslin & J. A. Sloboda (Eds.), Handbook of Music and Emotion: Theory, Research, Applications (pp. 3-20). Oxford University Press. Thoma, M. V., La Marca, R., Brönnimann, R., Finkel, L., Ehlert, U., & Nater, U. M. (2013). The effect of music on the human stress response. PLOS ONE, 8 (8), e70156. Krause, A. E., North, A. C., & Heritage, B. (2023). The role of music listening in reducing stress and anxiety: A meta-analysis. PLOS ONE, 18 (1), e0281337 Lesiuk, T. (2005). The effect of music listening on work performance. Psychology of Music, 33 (2), 173-191. Lesiuk, T. (2012). The effect of music listening on work performance. IEEE Transactions on Professional Communication, 55 (4), 282-290. Lesiuk, T. (2005). The effect of music listening on work performance. PLOS ONE, 8 (8), e70156. Miller, A. H., Haroon, E., Raison, C. L., & Felger, J. C. (2017). Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. The Lancet Neurology, 16 (11), 1013-1025. Project Gallery

  • Breast Cancer and Asbestos | Scientia News

    A collaboration with the Mesothelioma Center (Asbestos.com), USA Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Breast Cancer and Asbestos 04/02/25, 15:44 Last updated: Published: 06/06/23, 10:03 A collaboration with the Mesothelioma Center (Asbestos.com), USA Breast cancer is a prevalent disease characterized by abnormal cell growth in the breast. There are various types of breast cancer, including invasive ductal carcinoma, invasive lobular carcinoma, Paget's disease, medullary mucinous carcinoma, and inflammatory breast cancer. In 2022, approximately 287,850 new cases of invasive breast cancer were diagnosed, making it the most commonly diagnosed cancer in women. Natural risk factors for breast cancer include gender, age, race, early onset of menstruation, family history, and genetics. Environmental factors, such as exposure to radiation, pesticides, polycyclic aromatic hydrocarbons, and metals, may also contribute to the risk of developing breast cancer. Some studies have suggested a possible connection between asbestos exposure and breast cancer. While the link between asbestos and other health conditions like mesothelioma cancer is well-established, the exact relationship between asbestos and breast cancer remains unclear. Statistical significance refers to the level of confidence in the results of a study or experiment. In the context of studies investigating the correlation between asbestos exposure and breast cancer, Dr. Debra David points out that many studies fail to establish a conclusive link due to a lack of statistical significance. Certain factors can increase the risk of developing breast cancer, known as "partial risk factors." Some of these factors can be controlled by individuals, such as alcohol consumption. However, many other partial risk factors are not within an individual's control without compromising their overall health. For example, receiving radiation therapy to the chest or making decisions regarding childbirth can be deeply personal choices that impact breast cancer risk. Examples of partial risk factors include consuming more than two alcoholic drinks per day, having children after the age of 30, not having children, not breastfeeding, using the drug diethylstilbestrol (DES) to prevent miscarriage, recent use of birth control pills, receiving hormone replacement therapy (HRT), undergoing radiation therapy to the chest area, and exposure to toxic substances or carcinogens. According to the American Cancer Society, approximately 5 to 10% of breast cancer cases can be directly attributed to inherited gene mutations. However, many other factors, such as exposure to carcinogens, may be beyond a cancer patient's control. Summary written by the Mesothelioma Center ( Asbestos.com ) For more information, visit their website , and also read important facts breast cancer and mesothelioma survival rate . For further information, particularly the legal consequences, check out the Lanier Law Firm, which has more specific information Project Gallery

  • Nanomedicine | Scientia News

    Tiny solutions for big health problems Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Nanomedicine 17/07/25, 10:52 Last updated: Published: 17/01/24, 00:07 Tiny solutions for big health problems As the landscape of the healthcare field expands, new advances are coming forth, and one such area of interest is nanomedicine. Existing on a miniature scale called nanometres, nanomedicine and technology provide a revolutionary solution to many modern-day problems faced by the scientific community. Through this article, we’ll aim to explore what exactly nanomedicine is, its importance, its use in medicine, as well as its limitations and future prospects. The nanoscale When mentioning nanomedicine or nanotechnology, we refer to materials and particles existing on the nanoscale. This lies between 1-100 nanometres. For reference, human hair is 80,000-100,000 nanometres wide, so comparatively, the technology is much smaller. Although the technology may seem small, its impact is far too significant to be discredited. Due to their smaller size, the nanoparticles hold several advantages, making them useful in biomedicine, these include providing greater surface area for molecular interactions in the body, and they are much easier to manipulate, allowing for greater control and precision in terms of diagnostics and medicine delivery (Figure 1). Cancer drug delivery systems Nanotechnology in the field of medicine is being widely used and tested with regards to its application as a drug delivery system. More recently, it’s being investigated for its increased precision in delivering anti-cancer drugs to patients. Nanotechnology enables precise drug delivery through the construction of nanoscale infrastructures called nanoparticles. These can be filled with anti-cancer drug treatments, and their outer structure can be further designed to include elements which target folate receptors, such as folic acid (B9 vitamin), thus increasing their affinity for specific receptors in the body. Folate receptors tend to be overexpressed on the surface of many cancers, including pancreas, breast, and lung. So, by increasing selectivity and targeting only the cells which overexpress these receptors, the nanoparticles can deliver chemotherapy drugs with increased precision. This increased accuracy results in decreased cellular toxicity to surrounding non-cancerous tissues whilst also reducing side effects. In current experiments, lipid nanoparticles loaded with the anti-cancer drug edelfosine were tested on mice with mantle cell cancer. Lipid nanoparticles offer several advantages as a drug delivery system, including biocompatibility, greater physical stability, increased tolerability, and controlled release of the encapsulated drug. Lipid nanoparticles are also advantageous for their ability to be size specific to a tumour. In the study, in vivo experimentation using mice that contained mantle cell lymphoma was used, and they were administered 30mg/kg of the encapsulated drug. After administering the edelfosine loaded nanoparticles every 4 days, it was found that the process of metastasis had been removed; this means that cancer cells could not spread to other parts of the body. Additionally, it was also found that because of the way the nanoparticles were absorbed into the lymphatic system, they could accumulate in the thoracic duct providing precise and slow release of the drug over time, thus preventing metastasis (Figure 2). Imaging and diagnostics Another area of use for nanotechnology includes imaging and diagnostics. This area of expertise is regarded as theranostics, which involves using nanoparticles as detectors to help locate the area of the body affected by a disease, such as the location of a tumour, and aid in diagnosing illnesses. With regards to diagnostics, nanoparticles can also help identify what stage of the disease is being observed as well as enable us to garner more information to form a concrete treatment programme for the patient, thus providing a personalised touch to their care. Nanomaterials can be used to engineer different types of nanoparticles, which can enhance contrast on CT and MRI scans so that diseases can be detected more easily by being more visible when compared to traditional scans. In collaboration with Belcher et al., Bardhan worked to collectively develop different formulations of polymers that would be most effective in imagining and detecting cancers earlier. In the figure below, a nanoparticle made of a core shell was used for imaging. It comprises a yellow polymer with a red fluorescent dye to increase imagining contrast of the area and a blue lanthanide nanoparticle. When the lanthanide particles are excited by a light source, fluorescence in the near infrared range (NIR-II) is emitted, allowing for clear contrast and imaging. This can be seen in the figure below. From the colours involved, the tumour being imaged could be investigated more thoroughly in how it was distributed and learn more about its microenvironment in a mouse affected by ovarian cancer (Figure 3). Nanobots In recent times, new investment in the form of nanorobots has been made apparent. Nanorobots are nanoelectromechanical systems whose size is very similar to human organelles and cells, so there are a variety of ways they could be helpful in healthcare, such as in the field of surgery. Traditionally, surgical tools can be limited to work on a small scale. However, with nanorobots, it can be possible to access areas unreachable to surgical tools and catheters whilst also reducing recovery time and infection risk, as well as granting greater control and accuracy over the surgery. In a study conducted by Chen et al. (2020), the researchers manipulated magnetotactic bacterial microrobots to kill a bacteria known as Staphylococcus aureus enabled by magnetic fields to target them. Using a microfluidic chip, the microrobots were guided to the target site and then were programmed to attach themselves to the bacteria. Once connected, the viability of the bacteria was reduced due to the swinging magnetic fields generated by the device. Although this research is promising, further research must be conducted to understand the compatibility of these nanotechnologies with the human body and any implications they may have in side effects (Figure 4). Challenges and safety concerns From the evidence explored above, it is evident that nanotechnology holds much promise in the field of healthcare. However, they are not without their challenges and resignations when introducing their use to human bodies. The human body is incredibly complex, and therefore the complete biocompatibility of nanoparticles, particularly nanobots, is currently under-researched and under reviewed. To extensively use them, it is vital first to understand how safe they are and their efficacy in treatment and diagnosis. Below is a summary of some of the advantages and disadvantages of these nanotechnologies (Figure 5). The future of nanotechnology in biomedicine In conclusion, nanotechnology indicates an extensive and optimistic field at the forefront of changing medical care from diagnosis to treatment. It has the potential to answer many pressing questions in healthcare including decreasing cytotoxicity via a precise drug delivery system, increased accuracy in diagnosis, and possibly becoming a novel tool in surgery. Although it is imperative for there to be new and evolved techniques to increase the quality of care for patients, it is vital not to rush and to be thorough in our approach. This involves undergoing further research, including conducting clinical trials when investigating the use of nanotechnology inside the human body; this will test for tissue compatibility, side effects, efficacy, and even dosage when using nanoparticles for drug delivery. In summary, the transformative role of nanomedicine is undeniable. It offers a path to a more personalised and precise healthcare system, allowing researchers to reshape treatment, diagnosis, and patient well-being, though its limitations are yet to be overcome. Written by Irha Khalid Related articles: Nanoparticles: the future of diabetes treatment? / Semi-conductor manufacturing / Room-temperature superconductor / Silicon hydrogel lenses / Nanoparticles and plant disease / Nanogels / Nanocarriers Project Gallery

  • Mauritius's rise as African leader of mobile networks | Scientia News

    Beyond sugarcane fields and dreamy beaches, Mauritius secures first place in mobile connectivity Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Mauritius's rise as African leader of mobile networks Last updated: 08/06/25, 11:12 Published: 05/06/25, 07:00 Beyond sugarcane fields and dreamy beaches, Mauritius secures first place in mobile connectivity Background: GSMA ranking In the bustling capital city of Port Louis, commuters check the latest news updates using mobile data on their phones. Across the busy, connecting streets, a handful of tourists video call their family back home, asking them what souvenirs they would like- also on mobile data. Apart from idyllic holiday scenes and solid sugar exports, the island nation of Mauritius has recently become number one in Africa for mobile connectivity- as scored by the Global System for Mobile Communications Association (GSMA). The small island is now at the forefront of telecommunication development, with the increasing rollout of 5G networks. How did this touristic country become a leader in mobile connectivity? On the 13th of August 2024, the GSMA announced its yearly index for mobile connectivity. The GSMA looks at 41 African countries and ranks them based on: internet accessibility, prices of mobile devices, relevant services and political environments. Scoring 62.7 points out of the possible 100, Mauritius took the first spot, in front of South Africa. This result also places the island country 76th in the world. Remarkably, this is the third consecutive year that Mauritius is leading in mobile connectivity in Africa. Moreover Mauritius, with a population of 1.26 million, boasts an average of 1.7 phones per person, compared to only 1.2 phones per person in the US (according to 2023 data). Connecting the island: 5G is nearly everywhere Three companies provide mobile phone networks on Mauritius island: Emtel, MTML (Chili) and state-owned My.t. At present, 5G is widely available in Mauritius, thanks to Emtel supplying it to approximately 80% of the island for both residential and commercial usage. Though Emtel is the biggest network in the country, My.t is the most popular provider currently, and it also offers 5G to its users. A closer look at 4G and 5G 3G (and 3G High-Speed Packet Access, HSPA), 4G (Long Term Evolution, LTE) and 5G are wireless mobile networks, where the ‘G’ in these networks means ‘generation’ and indicates the strength of the signal on the mobile device. Hence, each mobile network is an improvement since the last generation of network. These mobile networks aim for high quality, reliable communication, and are based on radio signals. Each generation has evolved to achieve this. Table 1 compares the differences between all of these networks. The original 1G network from 1979 used analogue radio signals, while subsequent network generations use digital radio signals. Table 1: A comparison of 2G, 3G, 4G and 5G mobile networks 2G 3G HSPA+ 4G LTE 5G Speed 64Kbps 8Mbps 50Mbps 10Gbps Bandwidth 30- 200 kHz 15- 20 MHz 100 MHz 30- 300 GHz Features Better quality video calls than before Can send and receive larger emails Higher speeds and capacities Much faster speeds and capacities; high resolution video streaming SMS and MMS Larger capacities Low cost per bit Low latency Interactive multimedia, voice, video Allows remote control of operations e.g. vehicles, robots, medical procedures It is evident from Table 1 that not only have speeds and capacities increased with each generation, but new features have also been implemented such as video calls, interactive multimedia, streaming, and remote control of operations. Introduced in 2019, 5G is thought to be the most ambitious mobile phone network- almost revolutionary in its benefits since 1G. Usually, mobile carriers operate on a 4G LTE and 5G coexistence. This means that 5G phones can switch to 4G if 5G isn’t available in the region. Top of the tower- how? Since the 5G rollout in 2021, Mauritius has been enjoying the larger capacities and speeds of the network. The same question arises: how did this touristic country become a leader in mobile connectivity? There are several factors: - Tourist hotspot - Government initiatives - Improving local infrastructure - General advancements in mobile network technologies - High penetration rates and mobile ownership - Increasing number of connections - Geography Each factor will be considered in turn. Factor 1- Tourist hotspot Every year, Mauritius attracts visitors far and wide to enjoy its mesmerising beaches, luscious escapes and tantalising wildlife. Therefore, over time, mobile network technology has had to improve to meet the communicative needs of tourists. Put differently, tourism significantly supports the telecom industry on the island. Factor 2- Government initiatives As well as providing free, public WiFi hotspots around the island, the government is committed to bridging the digital divide and increasing access to all of its population. Thus, it was announced that, eligible citizens between the ages of 18 and 25 will receive a free, monthly mobile data package (with 4G and 5G capabilities)- starting from the 1st of September 2024. It is an endeavour to include young people in the government’s digital plans, i.e. digital inclusion. Factor 3- Improvements in local infrastructure In recent years, My.t and EmTel have been upgrading their equipment to ensure better coverage and access to 5G in the country. Infrastructure must have improved so that the three mobile operators on the island were granted the license for 5G rollout in June 2021. The current goal is to fully expand 5G coverage in Mauritius. Factor 4- General advancements in mobile network technologies Since its inception in 2019, 5G has had a profound impact on consumers around the globe with its low latency, high resolution streaming, and insanely high speeds and capacities. This pioneering mobile network has rolled out to millions of people, including the citizens of Mauritius island. The government has utilised this new technology to empower its people and pave a way for the country to become a leader in mobile connectivity. Factor 5- High penetration rates and mobile ownership Early 2025 data shows that the East African nation has over 2.1 million active mobile connections, when its population is half of that, a mere 1.261 million. (More mobile connections is not a usual thing as people may have separate connections for personal and work use, for example. Embedded SIMs – eSIMs- have made this possible recently). With this statistic, Mauritius has a high degree of mobile ownership and network connection density. Factor 6- An increase in the number of connections Another recent event is that the number of mobile connections in the nation has been increasing gradually: between 2024 and 2025, the number has increased by 1.9%. Factor 7- Geography It is known that less land- especially less rural land- makes deployment of cell phone towers and installation of masts much easier. Therefore, spanning an area of 2,040 squared kilometres, the main island of Mauritius can enjoy adequate mobile coverage- being one of the smallest African countries. Small island, big signal. To summarise, the above factors contribute to the number one ranking in mobile connectivity for Mauritius. What does Mauritius’s rise mean for the future? If these advancements in infrastructure and technology continue on the island, then there is a brighter outlook for the future. 5G coverage in Mauritius is on its way to completion, ensuring all districts have access to the latest mobile network. Geography, government initiatives, improvements in infrastructure by mobile operators, high number of mobile connections and ownership, are some of the factors that enabled 5G rollout in Mauritius in the first instance. Mauritius is leading by example to the other countries in Africa and is additionally performing well on the global stage for mobile networks. This small island country, usually known for its exotic sights and sugarcane landscape, is quickly overtaking its African neighbours in the race to become the leader in mobile phone connectivity. Written by Manisha Halkhoree Related articles: The future of semiconductor manufacturing / Wireless electricity Project Gallery

bottom of page