top of page

Search Index

257 items found

Other Pages (238)

  • Story of the atom | Scientia News

    Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Story of the atom From the Big Bang to the current model The Greek philosopher and physicist Democritus proposed the idea of an atom at around 440 B.C. The atom is first explained by him using a stone. When a stone is split in half, it becomes two separate stones. There would eventually come to be a portion of the stone that would be too small to be cut if it were to be cut continuously i.e., indivisible. Since then, many scientists have adopted, discarded, or published their own theories about the nature, structure, and size of atoms. However, the most widely accepted, and still the basic model used to study atoms is Rutherford’s model. Rutherford published his theory of the atom suggesting that it had an electron orbiting a positively charged nucleus. This model was created after a series of experiments which included shooting alpha particles at thin gold sheets. Most of the alpha particles flowed through with little disturbance, but a tiny fraction was scattered at extreme angles to their initial direction of motion. Rutherford calculated the estimated size of the gold atom's nucleus and discovered that it was at least 10,000 times smaller than the atom's total size, with a large portion of the atom made up of empty space. This theory paved the way to further the atomic models by various other scientists. (Figure 1) Researchers have discovered unidentified molecules in space which are believed to be the precursor of all chemistry in the universe. The earliest "atoms" in the cosmos were actually nuclei without any electrons. The universe was incredibly hot and dense in the earliest seconds following the Big Bang. The quarks and electrons that make up matter first appeared when the cosmos cooled, and the ideal conditions were met for them to do so. Protons and neutrons were created by quarks aggregating a few millionths of a second later. These protons and neutrons joined to form nuclei in a matter of minutes. (Figure 2) Things started to happen more slowly as the cosmos cooled and expanded. The first atoms were formed 380,000 years ago when electrons were locked into orbits around nuclei. These were mostly hydrogen and helium, which are still the elements that are found in the universe in the greatest quantities. Even now, the most basic nucleus, found in ordinary hydrogen, is only a single, unadorned proton. There were other configurations of protons and neutrons that also developed, but since the number of protons in an atom determines its identity, all these other conglomerations were essentially just variations of hydrogen, helium, and lithium traces. To say that this is an exciting time for astrochemistry is an understatement. Furthermore, the formation mechanism of amino acids and nucleobases is being demonstrated by laboratory simulations of interstellar environments. Now that we are finding answers to these known problems, even more are arising. Hopefully, a more thorough understanding of these chemical processes will enable us to make more precise deductions about the general history of the universe and astrophysics. Written by Navnidhi Sharma REFERENCES CERN (n.d.). The early universe. [online] CERN. Available at: https://home.cern/science/physics/earlyuniverse#:~:text=As%20the%20universe%20continued%20to . Compound Interest (2016). The History of the Atom – Theories and Models | Compound Interest. [online] Compound Interest. Available at: https://www.compoundchem.com/2016/10/13/atomicmodels/ . Fortenberry, R.C. (2020). The First Molecule in the Universe. Scientific American. [online] doi: https://doi.org/10.1038/scientificamerican0220-58 . Sharp, T. (2017). What is an Atom? [online] Live Science. Available at: https://www.livescience.com/37206-atom-definition.html . Project Gallery

  • The environmental impact of EVs | Scientia News

    Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The environmental impact of EVs A chemical perspective Electric vehicles (EVs) are gaining momentum worldwide as a greener alternative to conventional internal combustion engine vehicles (ICEVs). The environmental benefits of EVs extend beyond their efficient use of electricity. In this article, we explore the chemical aspects of EVs and their environmental impact, shedding light on their potential to mitigate climate change and reduce pollution. Greenhouse Gas Emissions Reduction: EVs play a crucial role in addressing climate change by significantly reducing greenhouse gas (GHG) emissions. Unlike ICEVs that rely on fossil fuels, EVs generate zero tailpipe emissions. By utilising electricity as their energy source, EVs minimise the release of carbon dioxide (CO2) and other GHGs responsible for global warming. However, it's essential to consider the environmental implications of electricity generation, emphasising the need for renewable energy sources to maximise the positive impact of EVs. Battery Chemistry and Resource Management: The heart of an EV lies in its rechargeable battery, typically composed of lithium-ion technology. The production and disposal of these batteries present both opportunities and challenges. Raw materials, such as lithium, cobalt, and nickel, are essential components of EV batteries. Responsible mining practices and efficient recycling techniques are vital to minimising the environmental impact of resource extraction and ensuring proper disposal or repurposing of used batteries. Electrochemical Reactions and Energy Storage: Electric vehicles rely on electrochemical reactions within their batteries to store and release energy. These reactions involve the flow of ions, typically lithium ions, between the positive and negative electrodes. Understanding the chemistry behind these processes enables the development of more efficient and durable battery systems. Continued research and innovation in battery chemistry hold the potential to enhance energy storage capabilities, extend EV range, and improve overall performance. Air Quality and Emission Reduction: EVs contribute to improved air quality due to their zero tailpipe emissions. By eliminating the release of pollutants such as nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOCs), EVs reduce smog formation and respiratory health risks. This is particularly significant in urban areas, where high concentrations of vehicular emissions contribute to air pollution. The adoption of EVs can help combat these issues and create cleaner and healthier environments. Battery Recycling and the Circular Economy: Given the increasing demand for EVs, battery recycling plays a vital role in ensuring a sustainable future. Recycling allows for the recovery of valuable materials and reduces the need for resource extraction. Effective recycling processes can mitigate the environmental impact of battery production, minimise waste generation, and promote a circular economy approach, where materials are reused and recycled to their fullest extent. Future Prospects and Chemical Innovations : Advancements in battery technology and chemical engineering are key to unlocking the full potential of EVs. Research efforts are focused on developing alternative battery chemistries, such as solid-state batteries, which offer improved energy density, safety, and recyclability. Additionally, exploring sustainable materials and manufacturing processes for batteries can further reduce the environmental footprint of EVs. In conclusion, electric vehicles represent a promising solution to combat climate change, reduce pollution, and promote sustainable transportation. From the chemistry behind battery systems to their impact on air quality and resource management, EVs offer a greener alternative to traditional vehicles. Continued research, innovation, and collaboration between the automotive industry, chemical scientists, and policymakers are essential for realising the full potential of EVs and creating a cleaner, more sustainable future. By Navnidhi Sharma Project Gallery

  • Women Leading the Charge in Biomedical Engineering | Scientia News

    Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Women Leading the Charge in Biomedical Engineering Pioneering progress In collaboration with Kameron's Lab for International Women's Month I was launched into the world of biomedical engineering by following my dreams. I met Dr. Ayanna Howard, an American roboticist and entrepreneur, and after hearing about my aspirations to become a surgeon but also loving robotics, she suggested the subject to me. Biomedical engineering is like a new dawn, seamlessly blending medicine, technology and engineering. It is a dawn that is illuminated by the brilliant dedication of the women who lead and innovate in the field. In a male-dominated industry like engineering, it is refreshing to see that the discipline of biomedical engineering constitutes of 40% women. This article celebrates the women who are redefining the boundaries of this interdisciplinary field. Changing lives with their discoveries, contributions and innovations. By sharing their stories, I aim to not only highlight the importance of diversity and representation in STEM but also to encourage more women to pursue their passions. Women leading biomedical innovation Speaking of women who are pioneering progress in biomedical engineering, this section highlights three of those women. Professor Elizabeth Tanner, Dr. Nimmi Ramanujam and Dr. Carcia Carson. Of course, this list is nowhere near exhaustive of the amazing contributions women have made to this field. I highly encourage you to learn more about the others who are forging a path for us all.... Professor Elizabeth Tanner, OBE, FREng, FRSE, PhD (Hon Caus), MA, DPhil, FIMMM, FIMechE, FIPEM, CEng, CSci Meeting Professor Tanner was like meeting a force to be reckoned with. In fact, I heard her name and about her contributions long before having the chance to meet her as a SEMS student ambassador. Professor Tanner is renowned for her work in biomaterials for bone and joint replacement. She is the Bonfield Professor of Biomedical Materials, Director of the Centre for Sustainable Engineering and the Director of the Institute of Bioengineering at Queen Mary University of London. Her significant contribution to developing HAPEX (hydroxyapatite polyethylene), the first of the bioactive composites used in patients, illustrates her commitment to blending scientific rigor with practical healthcare solutions. She left Queen Mary in 2007 to join the University of Glasgow where she started their Biomedical Engineering degree. This was the first in Scotland and she continued her research on bioactive composite materials there. Returning to Queen Mary in 2018, she has influenced countless students, including myself as my professor. She imparts not only knowledge in her lessons but also her passion. If you ever study biomedical engineering at Queen Mary, you can look forward to her engaging lecture on gait. Dr. Nimmi Ramanujam As a distinguished Professor of Biomedical Engineering and the Director of the Centre for Global Women’s Health Technologies, Dr. Ramanujam’s work represents meaningful innovation. Her work focuses on developing imaging and therapeutic tools for cancer, especially in women’s help. It is truly transforming the approach to cancer care and goes beyond the lab. She has made several global initiatives that aim to make a long lasting impact on health and education. One of the most well known is the Women Inspired Strategies for Health (WISH). Carcia Carson, PhD Dr. Carcia Carson is an inspiration for young black women in engineering. She hold the historic achievement of the first Black woman to earn a Ph.D. in Biomedical Engineering at Vanderbilt University. Her success and journey exemplify the steps being made towards diversity and representation in STEM fields. She was introduced to medical physics through her studies at Fisk University. After her Ph.D., her professional research will center around developing translational research in cancer vaccines and personalized immunotherapy. Her research focuses on engineering cancer cell surfaces with surface-conjugated nanomaterial drug carries to enhance immunogenicity of whole cell-based cancer vaccines. To break it down a bit, cell-surface conjugation permits co-localized delivery of both tumor antigens and immune-stimulatory adjuvants. She notes that while studying she ‘didn’t see anybody that looked like’ her. With this being the experience for many woman of colour in STEM, the need for representation and diversity remains imperative. The importance of representation With biomedical engineering progressing every day, the significance of representation cannot be overstated. Diversity in the field is not just about fairness and equity, it is about ensuring that the innovation includes people from a wide range of backgrounds. This way, problems are being solved for a multitude of cultures and needs, not just a cookie cutter solution. The 40% of women in biomedical engineering are more than a statistic, they are a testament to the rich and varied perspectives in this critical field. It is wonderful to see. Representation is profoundly important for several reasons, especially in healthcare. For example, the speculum has remained the same for over 150 years. This cold, uncomfortable device is used for the screening of cervical cancer. Until recently, it has remained untouched and led to women being put off the test entirely. In the UK, nearly 98% of cases are classed as preventable. Women brig valuable insights into women’s health issues through advocatioon and creating inclusive healthcare solutions. A diverse workforce challenges the status quo and leads to novel approaches and thinking. Furthermore, the presence of women in leadership roles within biomedical engineering catalyses change and creates opportunities for the next generation. Young girls are more likely to pursue careers ins STEM if they see other women succeeding in them. This representation builds a pipeline of talent that is crucial for the sustained growth and evolution of biomedical engineering. The power of mentorship Outside of representation, the transformative power of mentorship is so important. Having a mentor is like the difference between navigating in the dark and having someone hold your hand with a comforting light. This mentorship can take a variety of forms: formal mentorship programs (sometimes provided by a university), organic relationships with friends and family and even virtually. A pivotal moment in my career was meeting my mentor, Dr. Carika Weldon. She was the first black Bermudian woman I met who was doing genetic research. But not only doing it, she was coming back home to share her success and giving back to the community. Conclusion Women’s invaluable contributions to biomedical engineering have made it clear that their involvement has been nothing short of transformative. Professor Elizabeth Tanner, Dr. Nimmi Ramanujam and Dr. Carcia Carson have had inspiring journeys of not only professional success but also in moving the field towards more diversity and inclusion. From launching the first biomedical engineering course in Scotland, to being the first black woman to hold a Ph.D in the field. These inspiring women serve as role models to us all. It is inspiring stories like theirs that we need as students with a passion for STEM. But many students find themselves unable to find mentors or someone in the STEM community to speak with. To learn from and to be inspired by. This is the reason that I launched my podcast, Kameron’s Lab| Dive In. I hope that it will be a platform for students to learn from the experts in the fields they aspire to be a part of. I remember only meeting a successful black woman in genetics when I was 16 years old. Students deserve to see people like them who are successful in the fields they love. My podcast aims to introduce them early by creating a library of professionals. Or as I like to call them, the Jedi Masters of STEM. Going back to the amazing women in biomedical engineering, their increasing presence is a sign of progress. But of course, more work needs to be done. We need to make sure that women not only enter this field, and other engineering fields, but also thrive and ascend to leadership positions. Only in these roles can they make the most significant change and shape the future of healthcare and technology. This narrative serves as not only a celebration of achievements, but also a call to action. To all aspiring female engineers, and scientists, it’s a showcase of possibilities and encouragement. To educators and industry leaders, it’s a reminder of the importance and benefits of a diverse workforce. As we continue to celebrate and support the achievements of women in this field, we are also moving closer to a future where the potential of every individual can be nurtured and realized for the benefit of all. Written by Kameron Young -- Scientia News wholeheartedly thanks Kameron Young , Founder of Kameron's Lab, for this interesting article on the pioneering individuals in the field of biomedical engineering. We hope you enjoyed reading this International Women's Month Special piece! Follow @Kamerons_Lab on Instagram and @Kameron Young on Linkedin for more information. -- Check out the amazing work Kameron does and follow her social pages for latest content! -- Read more about the inspiring women mentioned in the article: Professor Elizabeth Dr. Nimmi Dr. Carcia -- Related articles: Female Nobel prize winners in physics and in chemistry / African-American women in cancer research / The foremothers in gynaecology REFERENCES Khan M. The success of women in Biomedical Engineering [Internet]. MedTech Foundation. 2023. Available from: https://www.medtechfoundation.org/post/the- success-of-women-in-biomedical-engineering ‌ Prof Elizabeth Tanner [Internet]. QMUL School of Engineering and Materials Science. Available from: https://www.sems.qmul.ac.uk/staff/k.e.tanner Young Lady bags PhD in Biomedical Engineering, sets record as the first-ever black person to achieve it in US university | Scholarship Region [Internet]. 2023. Available from: https://www.scholarshipregion.com/young-lady-bags-phd-in-biomedical-engineering-sets-record-as-the-first-ever-black-person-to-achieve-it-in-us-university/ ‌‌ Carcia Carson [Internet]. Fisk-Vanderbilt Master’s-to-PhD Bridge Program. Available from: https://www.fisk-vanderbilt-bridge.org/carcia-carson ‌ How enduring use of 150-year-old speculum puts women off smear tests [Internet]. The Independent. 2022. Available from: https://www.independent.co.uk/life- style/women/speculum-use-smear-tests-pain-sexism-b2105111.html ‌ https://bme.duke.edu/faculty/nimmi-ramanujam Project Gallery

View All
bottom of page