top of page

Search Index

355 results found

  • Complex disease I- schizophrenia | Scientia News

    An introductory and comprehensive review of complex diseases and their environmental influences. Using schizophrenia as an example, we are interested in exploring one of the biggest questions that underlie complex diseases. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The environment on complex diseases: schizophrenia Last updated: 18/11/24 Published: 08/05/23 An introductory and comprehensive review of complex diseases and their environmental influences. Using schizophrenia as an example, we are interested in exploring one of the biggest questions that underlie complex diseases. Introduction: Not Exactly a Yes or No Question Many things in science revolve around questions. It is remarkable to find the number of questions left for scientists to answer or those that will remain unanswered. Indeed, one of the most daunting tasks for any scientist would be to see through every detail of a piece of information, even if everyone has seen it, but with different sets of lenses and asking different sets of questions. After all, “why did the apple fall from its tree?”. However, asking questions is one thing. Finding answers and, more importantly, the evidence or proof that supports them does not always yield conclusive results. Nevertheless, perhaps some findings may shine a new light on a previously unanswered question. We can categorise the study of genetics into two questions: “What happens if everything goes well?” and “What happens if it goes wrong?”. Whilst there are virtually limitless potential causes of any genetic disease, most genetic diseases are known to be heritable. A mutation in one gene that causes a disease can be inherited from the parents to their offspring. Often, genetic diseases are associated with a fault in one gene, known as a single-gene disorder, with notorious names including Huntington’s disease, cystic fibrosis, sickle cell anaemia, and familial hypercholesterolaemia. These diseases have different mechanisms, and the causes are also diverse. But all these diseases have one thing in common: they are all caused by a mutation or fault in one gene, and inheriting any specific genes may lead to disease development. In other words, “either you have it, or you do not”. The role of DNA and mutations in complex diseases. Image/ craiyon.com Multifactorial or complex diseases are a classification geneticists give to diseases caused by factors, faults or mutations in more than one gene. In other words, a polygenic disease. As a result, the research, diagnosis, and identification of complex diseases may not always produce a clear “black-and-white” conclusion. Furthermore, complex diseases make up most non-infectious diseases known. The diseases associated with leading causes of mortality are, in their respective ways, complex. Household names include heart diseases, Alzheimer’s and dementia, cancer, diabetes, and stroke. All of these diseases may employ many mechanisms of action, involving multiple risk factors instead of direct cause and effect, using environmental and genetic interactions or factors to their advantage, and in contrast to single-gene disorders, do not always follow clear or specific patterns of inheritance and always involve more than one problematic genes before the complete symptoms manifest. For these reasons, complex diseases are infamously more common and even more challenging to study and treat than many other non-infectious diseases. No longer the easy “yes or no” question. The Complex Disease Conundrum: Schizophrenia Here we look at the case of a particularly infamous and, arguably, notorious complex disease, schizophrenia (SCZ). SCZ is a severely debilitating and chronic neurodevelopmental disorder that affects around 1% of the world’s population. Like many other complex diseases, SCZ is highly polygenic. The NHS characterise SCZ as a “disease that tends to run in families, but no single gene is known to be directly responsible…having these genes does not necessarily mean one will develop SCZ”. As previously mentioned, many intricate factors are at play behind complex diseases. In contrast, there is neither a single known cause for SCZ nor a cure. Additionally, despite its discovery a century ago, SCZ is arguably not well understood, giving a clue to the sophisticated mechanisms that underlie SCZ. To further illustrate how such complexities may pose a challenge to future medical treatments, we shall consider a conundrum that diseases like SCZ may impose. The highly elaborate nature of complex diseases means that it is impossible to predict disease outcomes or inheritance with absolute certainty nor rule out potential specific causes of diseases. One of the most crucial aspects of research on complex diseases is their genetic architecture, just as a house is arguably only as good as its blueprint. Therefore, a fundamental understanding of the genes behind diseases can lead to a better knowledge of diseases’ pathogenesis, epidemiology, and potential drug target, and hopefully, one day bridge our current healthcare with predictive and personalised medicine. However, as mentioned by the NHS, one of the intricacies behind SCZ is that possessing variants of diseased genes does not translate to certainty in disease development or symptom manifestation. Our conundrum, and perhaps the biggest question on complex diseases like SCZ is: “Why, even when an individual possesses characteristic genes of a complex disease, they may not necessarily exhibit symptoms or have the disease?”. The enigma surrounding complex diseases lies in the elegant interactions between our genes, the blueprint of life, and “everything else”. Understanding the interplay of factors behind complex diseases may finally explain many of the intricacies behind diseases like SCZ. Genes and Environment: an Obvious Interaction? The gene-environment important implications on complex disease development were demonstrated using twin studies. A twin study, as its name suggests, is the study of twins by their similarities, differences, and many other traits that twins may exhibit to provide clues to the influences of genetic and external factors. Monozygotic (MZ) twins each share the same genome and, therefore, are genetically identical. Therefore, if one twin shows a phenotype, the other twin would theoretically also have said genes and should exhibit the corresponding trait. Experimentally, we calculate the concordance rate, which means the probability of both twins expressing a phenotype or characteristic, given that one twin has said characteristic. Furthermore, the heritability score may be mathematically approximated using MZ concordance and the concordance between dizygotic twins (twins that share around half a genome). These studies are and have been particularly useful in demonstrating the exact implications genetic factors have on phenotypes and how the expression of traits may have been influenced by confounding factors. In the case of SCZ, scientists have seen, over decades, a relatively low concordance rate but high heritability score. A recent study (published in 2018) through the Danish SCZ research cohort involved the analysis of around 31,500 twins born between the years 1951 and 2000, where researchers reported a concordance rate of 33% and estimated heritability score of 79%, with other older studies reporting a concordance rate up to and around 50%. The percentages suggest that SCZ is likely to be passed down. In other words, a genetically identical twin only has approximately 1 in 2 risks of also developing symptoms of SCZ if its opposite twin also displays SCZ. The scientists concluded that although genetic predisposition significantly affects one’s susceptibility or vulnerability against SCZ, it is not the single cause of SCZ. Demographically, there have been studies that directly link environmental risks to SCZ. Some risk factors, such as famines and malnutrition, are more evident than others. However, some studies also associate higher SCZ risk among highly industrialised countries and first or second-generation migrants. For instance, few studies point out an increased risk of SCZ within ethnic minorities and Afro-Caribbean immigrants in the United Kingdom. Hypotheses that may explain such data include stress during migration, potential maternal malnutrition, and even exposure to diseases. With this example, hopefully, we all may appreciate how the aetiology of SCZ and other complex diseases are confounded by environmental factors. In addition, how such factors may profoundly influence an individual’s genome. SCZ is a clear example of how genetic predisposition, the presence of essential gene variants characteristic of a disease, may act as a blueprint to a terrible disease waiting to be “built” by certain factors as if they promote such development. It is remarkable how genetic elements and their interactions with many other factors may contribute almost collectively to disease pathogenesis. We can reflect this to a famous quote amongst clinical geneticists: “genetics loads the gun, and environment pulls the trigger.” Carrying high-risk genes may increase the susceptibility to a complex disease, and an environment that promotes such disease may tip the balance in favour of the disease. However, finding and understanding the “blueprints” of SCZ, what executes this “blueprint”, and how it works is still an area of ongoing research. Furthermore, how the interplay between genetics and external factors can lead to profound effects like disease outcomes is still a relatively new subject. The Epigenome: the Environment’s Playground To review, it is clear that genes are crucial in complex disease aetiology. In the case of SCZ, high-risk genes and variances are highly attributed to disease onset and pathogenesis. However, we also see with twin studies that genetics alone cannot explain the high degree of differences between twins, particularly when referring to SCZ concordance between identical twins. In other words, external factors are at play, influencing one’s susceptibility and predisposition to SCZ. These differences can be explained by the effects epigenetics have on our genome. Epigenetic mechanisms regulate gene expression by modifying the genome. In short, on top of the DNA double strands, the genome consists of additional proteins, factors, and even chemical compounds that all aid the genetic functions our body heavily relies on. The key to epigenetics lies in these external factors’ ability to regulate gene expression, where some factors may promote gene expression whilst others may prevent it. Epigenetic changes alter gene functions as they can turn gene expression “on” and “off”. Furthermore, many researchers have also shown how epigenetic changes may accumulate and be inherited somatically with cell division and even passed down through generations. Therefore, epigenetic changes may occur without the need to change any of the DNA codes, yet, they may cause a profound effect by controlling gene expression throughout many levels of the living system. These underlying mechanisms are crucial for the environment’s effect on complex diseases. Some external factors may directly cause variances or even damage to the genome (e.g. UV, ionising radiation), and other sources may indirectly change gene expression by manipulating epigenetic changes. The exact molecular genetics behind epigenetic mechanisms are elaborate. However, we can generally find three common epigenetic mechanisms: DNA Methylation, Histone Modification, and Non-coding RNA. Although each method works differently, they achieve a common goal of promoting or silencing gene expression. All of these are done by the many molecular components of epigenetics, altering the genome without editing the gene sequence. We refer to the epigenome, which translates to “above the genome”, the genome itself and all the epigenetic modifiers that regulates gene expression on many levels. Environmental factors and exposure may influence epigenetic mechanisms, affecting gene expression in the cell or throughout the body, sometimes permanently. Therefore, it is clear how the epigenome may change throughout life as different individuals are exposed to numerous environmental factors. Furthermore, each individual may also have a unique epigenome. Depending on which tissues or cells are affected by these mechanisms, tissues or cells may even have a distinct epigenome, unlike the genome, which is theoretically identical in all cells. One example of this is the potential effects of DNA methylation on schizophrenia epidemiology. DNA methylation can silence genes via the enzymes DNA methyltransferases (DNMT), a family of enzymes capable of catalysing the addition of methyl groups directly into the DNA. The DNMT enzymes may methylate specific nucleotides on the gene, which usually would silence said gene. Many researchers have found that the dysregulation of DNA methylation may increase the risk towards the aetiology of numerous early onset neuro-developmental disorders. However, SCZ later-onset development also points towards the influence of environmental risk factors that target DNA methylation mechanisms. Studies show links between famines and SCZ increased prevalence, as the DNMT enzymes heavily rely on nutrients to supply essential amino acids. Malnutrition is thought to play a considerable role in DNA methylation changes and, therefore, the risk of SCZ. Small Piece of a Changing Puzzle Hopefully, we can see a bigger picture of the highly intricate foundation beneath complex diseases. Bear in mind that SCZ is only one of many complex diseases known. SCZ is ultimately not a pristine and impartial model to study complex disorders. For instance, concordance rates of complex diseases change depending on their genetic background. In addition, they may involve different mutations, variance, or dysregulation of differing pathways and epigenetic mechanisms. After all, complex diseases are complex. Finally, this article aimed to give a rundown of the epigenetics behind complex diseases like SCZ. However, it is only a snapshot compared to the larger world of the epigenome. Furthermore, some questions remain unanswered: the genetic background and architecture of complex diseases, and ways to study, diagnose, and treat complex diseases. This Scientia article is one of the articles in Scientia on the theme of complex disease science and genetics. Hopefully, this introductory article is an insight and can be used to reflect upon, especially when tackling more complicated subjects of complex diseases and precision medicine. Written by Stephanus Steven Related articles: Schizophrenia, Inflammation, and Accelerated Ageing / An Introduction to Epigenetics

  • You're not a fraud: battling imposter syndrome in STEM | Scientia News

    It's extremely pronounced in a technical environment Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link You're not a fraud: battling imposter syndrome in STEM Last updated: 22/05/25, 10:01 Published: 17/04/25, 07:00 It's extremely pronounced in a technical environment Background If you work in STEM or take even a keen interest in the field, it’s highly likely you’d have heard of and possibly experienced the term 'imposter syndrome'. Despite the glamorised success stories and carefully curated achievements we see in professional circles and on social media, let’s take a realistic step back - people struggle no matter how qualified they are. It’s okay to admit that, and it’s time we remove the stigma of this common experience. Coming into the Scientist Training Programme, I felt a sense of excitement and pride in my achievement of having even managed to get a place on the programme. As I settled in, this quickly turned into something else – fear, anxiety, worry. Feelings that I may not be good enough or I’m not where I belong. I seemed like the only one in my department without a postgraduate qualification. I began feeling out of place. It was only until I was able to put a label on this feeling – imposter syndrome, that I could take active steps to fix it. So, what is imposter syndrome? Put simply, it's the persistent feeling of self-doubt and inadequacy despite evident success. It makes you question whether you truly deserve your accomplishments, fearing that at any moment, someone will expose you as a fraud. This is extremely pronounced in a technical environment where your success is largely measured by your ability to tackle complex problems. Understanding its purpose While frustrating, imposter syndrome stems from a mechanism designed to keep us grounded and striving for growth. As social beings, we evolved to be highly attuned to hierarchies and belonging, and self-doubt may have once served as a protective mechanism, preventing reckless decisions. However, in today’s world, particularly in STEM fields, this innate caution can turn into chronic self-evaluation. The role of social media Imposter syndrome can be exacerbated through the often-unrealistic lens of social media. As I scroll through various social media platforms, I encounter countless posts showcasing often unrealistically flawless careers. Despite what you see in those 'day in the life' posts, not every STEM professional wakes up at 4am and has a cold shower. Rarely do we see the setbacks, rejections, or moments of self-doubt behind those polished posts, yet they exist for everyone. The distortion of what we see online is undoubtably a catalyst for imposter syndrome, but we can take a sensible step back and look at things through a realistic lens. Comparison truly can be the thief of joy if you let it. Coping strategies The good news is, it’s not all doom and gloom and there are strategies we can employ to handle our mischievous minds. As STEM professionals, sometimes we become isolated in our work, deeply ingrained in fixing a problem and not realising there are countless others to share your thoughts and feelings with. This is something I pushed myself to do and as I reached out to the wider community of trainee scientists, I quickly realised that I wasn’t alone. Almost everyone I had spoken to had shared a similar sentiment of having experienced imposter syndrome to some extent. It is important to remember that imposter syndrome is something that has been a universal experience for a very long time. It is certainly not a feeling that is exclusive to those in the early stages of their career as I surprisingly found out having networked with senior figures in the STEM community. My supervisor – a consultant clinical scientist with over 40 years of experience still experiences imposter syndrome as he tackles new challenges in the ever-evolving world of science. I have found that keeping a journal has been incredibly beneficial in logging my achievements -whether personal or career-related. Having a record of successes, no matter how small, serves as a tangible reminder that progress is being made, even when self-doubt tries to convince me otherwise. But the most effective tool I’ve discovered is something I’m still learning myself - self-compassion instead of self-criticism. It’s easy to be too hard on yourself, especially in STEM, where learning new things daily is the norm. The pressure to always have the right answers can make mistakes feel like failures rather than part of the learning process. But the reality is that growth comes from pushing through discomfort, not from perfection. Learning to extend yourself the same kindness you would offer a friend can make a world of difference in battling imposter syndrome. Reframing its meaning If you have experienced imposter syndrome I do have some good news for you – you’re pushing yourself out of your comfort zone in some way and challenging yourself. That is something to be proud of and its important to realise that experiencing imposter syndrome can sometimes simply be a mandatory byproduct of self-growth. You are exactly where you need to be. Even the greatest of minds can experience imposter syndrome. Albert Einstein himself once remarked: The exaggerated esteem in which my lifework is held makes me very ill at ease. I feel compelled to think of myself as an involuntary swindler. So, remember, you’re not alone in this struggle. When to seek help While imposter syndrome is something that a large majority of people experience, you should know when to seek help. If it manifests into something much more than occasional self-doubt, there is no shame in reaching out for help. Speaking to trusted friends or family about how you’re feeling is crucial to keep your mind in the right place. A qualified therapist will be well equipped to help you deal with imposter syndrome and keep you grounded. There are a wealth of online resources that can be used to help you; such as articles, self-help guides, and professional development communities – including the team here at Scientia News who offer strategies to build confidence and reframe negative thinking. Acknowledging imposter syndrome is the first step, but learning to challenge it is what truly allows you to move forward. And the next time you begin to doubt yourself, take a step back and think about your achievements and how they themselves were born from the ashes of self-doubt. Written by Jaspreet Mann Related articles: My role as a clinical computer scientist / Mental health strategies / Mental health in South Asian communities REFERENCES “Imposter Syndrome: A Curse You Share with EinsteinThesislink « Thesislink.” Thesislink, 10 July 2018, https://thesislink.aut.ac.nz/?p=6630 . NHS Inform (2023) ‘Imposter syndrome’, NHS Inform. Available at: https://www.nhsinform.scot/healthy-living/mental-wellbeing/stress/imposter-syndrome . Mind (2022) ‘Understanding imposter syndrome’, Mind. Available at: https://www.mind.org.uk/information-support/types-of-mental-health-problems/imposter-syndrome/ . Healthline (2021) ‘What is imposter syndrome and how can you combat it?’, Healthline. Available at: https://www.healthline.com/health/mental-health/imposter-syndrome . Psychology Today (2020) ‘Overcoming imposter syndrome’, Psychology Today. Available at: https://www.psychologytoday.com/gb/blog/think-well/202002/overcoming-imposter-syndrome . beanstalk. Feel Like a Fraud? How to Overcome Imposter Syndrome - Employee and Family Resources . 1 Jan. 2023, https://efr.org/blog/feel-like-a-fraud . Ling, Ashley. “3 Ways to Get Past Imposter Syndrome.” Thir.St , 13 Aug. 2024, https://thirst.sg/3-ways-to-get-past-imposter-syndrome/ . Project Gallery

  • Potential vaccine for malaria | Scientia News

    Malaria is a vicious parasitic disease spread through the bite of the female Anopheles mosquito, with young children being its most prevalent victim. In 2021, there were over 600,000 reported deaths, giving us an insight into its Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Could this new vaccine spell the end of malaria? Last updated: 20/01/25 Published: 01/02/23 Malaria is a vicious parasitic disease spread through the bite of the female Anopheles mosquito, with young children being its most prevalent victim. In 2021, there were over 600,000 reported deaths, giving us an insight into its alarming virulence. The obstacle in lessening malaria's disease burden is the challenge of creating a potent vaccine. The parasite utilises a tactic known as antigenic variation, where its extensive genetic diversity of antigens allows it to modulate its surface coat, allowing it to effectively evade the host immune system. However, unlike other variable malaria surface proteins, RH5, the protein required to invade red blood cells (RBC), does not vary and is therefore a promising target. Researchers at the University of Oxford have demonstrated various human antibodies that block the interaction between the RH5 malaria protein to host RBCs, providing hope for a new way to combat this deadly disease. The researchers have reported up to an 80% vaccine efficacy, surpassing the WHO's goal of developing a malaria vaccine with 75% efficacy. Therefore, this vaccine has the potential to be the world’s first highly effective malaria vaccine, and with adequate support in releasing this vaccine, we could be well on our way to seeing a world without child deaths from malaria. Written by Bisma Butt Related articles: Rare zoonotic diseases / mRNA vaccines

  • The importance of calcium in life | Scientia News

    In bones, neural communications, fertilisation and more Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The importance of calcium in life Last updated: 12/03/25, 16:45 Published: 10/04/25, 07:00 In bones, neural communications, fertilisation and more Did you know that the same mineral that gives your bones strength also helps to maintain your heartbeat and even plays a role in the very start of life? Calcium, the most abundant mineral in the human body, is primarily found in bones and teeth as calcium phosphate (Ca₃(PO₄)₂). But beyond its structural role, calcium ions are essential for nearly every biological function, from muscle contractions to nerve signalling. What makes calcium so versatile, while other minerals like iron, have far more limited roles? To truly understand its significance, we must explore its underlying chemical properties. Calcium and bones The calcium ion carries a 2+ charge allowing it to form stronger ionic bonds and interact strongly with negatively charged molecules like nucleotides and ATP. This makes it essential for energy transfer in cells. In comparison to monovalent ions like Na+ and K+, calcium, therefore, has a more significant charge density, increasing affinity for anions. However, the ion also has more shells than beryllium and magnesium in the same group (Group 2), contributing to reduced charge density. These properties are very crucial in determining the strength of Calcium compounds, as a high charge density may result in problems with toxicity and difficulty in the breakdown of the product. Calcium phosphate exists as hydroxyapatite in bones and teeth, giving them hardness and rigidity. Hydroxyapatite forms hexagonal crystals that are tightly packed, contributing to the dense, durable structure of bones. These crystals are organised into a matrix along collagen fibres, creating a composite material that combines rigidity (from hydroxyapatite) and flexibility (from collagen). The properties of hydroxyapatite make it uniquely suited for its roles in the body. Its hardness provides bones with the ability to resist deformation and compression, while its porous structure allows space for blood vessels, bone marrow, and the exchange of nutrients and waste. Osteoclasts break down the bone releasing calcium and phosphate ions while osteoblasts can reabsorb this calcium to reform bones in another area of the body, maintaining skeletal health and strength. Neural communication Imagine a relay race where one runner must pass the baton to the next for the race to continue. In a similar way, calcium ions act as messengers in the nervous system, triggering the release of neurotransmitters which allow nerve cells to communicate with each other. Upon experiencing a stimulus, sodium ions begin to enter neurones through voltage-gated sodium channels, causing depolarisation, which sends an electrical signal throughout the neurone that results in the opening of other sodium channels, carrying the electrical signal throughout the neurone until the signal reaches the axon terminal. When the action potential reaches the axon terminal, it triggers the opening of voltage-gated calcium channels in the membrane of the presynaptic neurone. Calcium ions from the extracellular fluid flow into the neurone due to the concentration gradient. This influx of calcium ions is a critical step in neural communication, as it directly facilitates the release of neurotransmitters stored in synaptic vesicles. This action helps to coordinate the strength and the timing of each heartbeat. Calcium ions bind to proteins on the surface of these vesicles, which enables the vesicles to fuse with the presynaptic membrane. This fusion releases neurotransmitters, such as acetylcholine, into the synaptic cleft—a tiny gap between the presynaptic and postsynaptic neurones. These neurotransmitters then bind to specific receptors on the postsynaptic neurone, leading to either an excitatory or inhibitory response. For example, acetylcholine often causes an excitatory response, such as muscle contraction or memory formation. Fertilisation Calcium ions are crucial for fertilisation, facilitating key events from sperm-egg interaction to the activation of embryonic development. When a sperm binds to the egg’s outer layer, calcium ions trigger the release of enzymes from the sperm, enabling it to penetrate the egg. Following the sperm-egg fusion, calcium ions are released within the egg, creating a wave-like signal. The rise in intracellular calcium levels in the egg has several critical effects triggers the cortical reaction, in which cortical granules – small vesicles located beneath the egg’s plasma membrane- release their contents into the space between the plasma membrane and the zona pellucida. The enzymes released during this reaction modify the zona pellucida, making it impermeable to other sperm. This process prevents polyspermy, ensuring that only one sperm fertilises the egg. This precise calcium signalling achieves successful fertilisation and the initiation of new life. Role of calcium in other organisms Calcium is a vital element essential for initiating and sustaining human life, but its importance extends far beyond the human body. Its role is not confined to animals as calcium is equally critical in the physiology of plants and fungi, where it contributes to a wide range of biological processes. In plants, calcium ions are used to form calcium pectate, a chemical used to strengthen the cell walls of the cell and make plant cells stick together. Additionally, calcium is vital for root development and nutrient uptake. It helps in the formation of root nodules in legumes, where nitrogen-fixing bacteria establish symbiotic relationships, and it influences the movement of ions across cell membranes to regulate nutrient transport. Furthermore, calcium oscillations play a crucial role in regulating the polarised growth of fungal hyphae, which are essential for environmental exploration and host infection. Hyphal growth is characterised by a highly localised expansion at the tip, requiring cytoplasmic movement and continuous synthesis of the cell wall. Calcium ions are central to these processes, functioning as dynamic signalling molecules. Calcium concentration is highest at the growing hyphal tip, forming a steep gradient essential for maintaining growth direction. This gradient is not static but oscillatory, with periodic fluctuations in cytosolic calcium levels. These oscillations arise from the interplay of calcium influx through plasma membrane channels like voltage-gated channels. These are critical for coordinating key processes at the hyphal tip. Calcium regulates vesicle trafficking by triggering the fusion of vesicles carrying enzymes with the plasma membrane. Additionally, calcium modulates the actin cytoskeleton, which provides tracks for vesicle transport and maintains the structural polarity of the hypha. Periodic calcium signals promote the dynamic assembly and disassembly of actin filaments, ensuring flexibility and responsiveness to physical barriers to mobility during growth. Through its oscillatory signalling, calcium enables the precise regulation required for hyphal growth and network formation. Conclusion In conclusion, calcium is a remarkably versatile element, playing vital roles across a diverse range of organisms. In humans and animals, it not only provides structural integrity through bones and teeth but also regulates critical physiological processes such as nerve signalling. Beyond animal systems, calcium is also essential in plants, where it strengthens cell walls and improves structure. In fungi, calcium oscillations are fundamental to hyphal growth, coordinating vesicle trafficking. From building bones to driving vital biological processes, calcium is a silent powerhouse in life. Its influence stretches across humans, plants, and even fungi. Its role is truly indispensable. Written by Barayturk Aydin Related articles: Bone cancer / Tooth decay REFERENCES Haider, A. et al. (2017) Recent advances in the synthesis, functionalization and biomedical applications of Hydroxyapatite: A Review, RSC Advances. Available at: https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra26124h (Accessed: 24 November 2024). Splettstoesser, T. (2024) Action potentials and synapses, Queensland Brain Institute - University of Queensland. Available at: https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses (Accessed: 01 December 2024). Abbott, A., L. (2001) ‘Calcium and the control of mammalian cortical granule exocytosis’, Frontiers in Bioscience, 6(1), p. d792. doi:10.2741/abbott. Vaz Martins, T. and Livina, V.N. (2019) What drives symbiotic calcium signalling in legumes? insights and challenges of imaging, International journal of molecular sciences. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC6539980/#:~:text=Currently%2C%20two%20different%20calcium%20signals,formation%20of%20the%20root%20nodule%2C (Accessed: 01 December 2024). Lew, R.R. (2011) ‘How does a hypha grow? the biophysics of pressurized growth in fungi’, Nature Reviews Microbiology, 9(7), pp. 509–518. doi:10.1038/nrmicro2591. Project Gallery

  • CRISPR-Cas9 discovery | Scientia News

    Jennifer Doudna and Emmanuelle Charpentier were jointly awarded the Nobel Prize in Chemistry in the year 2020, for their major contributions in reducing the number of components in the CRISPR-Cas9 system. An outline of their discovery CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats) can be used, by removing, adding, or altering particular DNA sequences and may edit specific parts of the genome. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Who were the winners of the Nobel Prize in Chemistry in 2020? Last updated: 07/11/24 Published: 02/02/23 Jennifer Doudna and Emmanuelle Charpentier were jointly awarded the Nobel Prize in Chemistry in the year 2020, for their major contributions in reducing the number of components in the CRISPR-Cas9 system. An outline of their discovery Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) can be used, by removing, adding, or altering particular DNA sequences and may edit specific parts of the genome. A four-part mechanism called the Cas9 endonuclease consists of two small molecules. By combining these two RNA molecules into a "single-guide RNA," by Jennifer Doudna and Emmanuelle Charpentier, the Cas9 endonuclease was redesigned into a more manageable two-component system that could locate and cut the DNA target defined by the guide RNA- CRISPR/Cas9 ‘genetic scissors’. It can silence or activate genes as well as add or remove others. The Nobel Prize in Chemistry was awarded in 2020 in recognition of this contribution. Some advantages of this technology: quick easy adaptable innovative, unique Disadvantages: distribution challenges extremely conservative ethical issues some off-target effects some negative outcomes Significance of this discovery This discovery is important in preventing disease and is such a revolutionary tool. It does not just help humans but also animals, plants and even bacteria. CRISPR has already been applied to various disorders, such as cancer and infectious diseases. By making it possible to make changes to the target cells' genomes, which were previously challenging to do, the procedure offers a new perspective on biological treatment and demonstrates how important this tool is. But since this technology is still recent, scientists must develop straightforward processes and techniques to monitor and test its progress, performance, and outcomes. Jennifer Doudna Hailing from Washington DC., USA, Jennifer Doudna was born in 1964. As a professor of biochemistry, biophysics, and structural biology, Doudna’s main research focus is on RNA, and its variety of structures and functions. It was her research lab’s work that led to the discovery of CRISPR-Cas9 as an extraordinarily powerful tool to cut and edit the human genome to treat disease. This remarkable discovery was a decade ago in 2012, when Doudna and others were able to copy a bacterial system to create molecular scissors, in order to edit the genetic code. In October 2020, at the time of her being awarded the Nobel Prize in Chemistry, Doudna was affiliated to the University of Berkeley, in California. Emmanuelle Charpentier Coming from a French background, Emmanuelle Charpentier is a professor and researcher in microbiology, genetics, and biochemistry. Born in 1968, researcher Charpentier has made tremendous progress in her respective field. From being the director at the Berlin Max Planck Institute for Infection Biology in 2015, to founding her own independent research institute- the Max Planck Unit for the Science of Pathogens in the year 2018, and of course being jointly awarded the Nobel Prize in Chemistry in 2020; it is true that Charpentier has added new, valuable research in her work and has come a long way in her career. Why the CRISPR/ Cas9 system fascinates us We find CRISPR fascinating because as biological science students, we know this tool is vital for genetics and can help cure present incurable diseases such as sickle cell disease as well as cancer, showing what a revolutionary tool this is. It does not just help humans but also animals, plants and even bacteria showing how broad biology is and different fields can be linked to one another. Researchers are constantly coming up with new ways to use CRISPR-Cas9 gene editing technology to solve problems in the real world, such as epigenome editing, new cell and gene therapies, infectious disease research, and the conservation of endangered species. The advantages of this technology are that it is quick, easy and adaptable, but its disadvantages include distribution challenges, extremely conservative ethical issues, some off-target effects, and some negative outcomes. By making it possible to make changes to the target cells' genomes, which were previously challenging to do, the procedure offers a new perspective on biological treatment and demonstrates how important this tool is. Written by Jeevana Thavarajah, and Manisha Halkhoree Scientia News founder and managing director Related articles: Female Nobel prize winners in Chemistry and in Physics

  • What is the James Webb Space Telescope? | Scientia News

    Launched in 2021, James Webb Space Telescope (JWST) is an astronomical observatory, designed to explore and observe the universe beyond the capabilities of its predecessor, the Hubble telescope. The JWST has primary mirror of 6.5m in diameter, the largest of any space-based telescope, and its advanced infrared technology, it can observe objects that were previously too faint, old, and distant for the Hubble telescope. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link James Webb Space Telescope: A Breakthrough in Space Exploration Last updated: 13/11/24 Published: 25/03/23 Launched in 2021, James Webb Space Telescope (JWST) is an astronomical observatory, designed to explore and observe the universe beyond the capabilities of its predecessor, the Hubble telescope. The JWST has a primary mirror of 6.5m in diameter, the largest of any space-based telescope; and with its advanced infrared technology, it can observe objects that were previously too faint, old, and distant for the Hubble telescope. The JWST’s aim is to revolutionise the exploration of the cosmos by studying the earliest galaxies and stars, and to detect light from the first objects that were formed in the universe. In its short deployment time, the JWST has already provided us with fascinating new insights and images of the deep space, pushing the boundaries of our understanding of the cosmos. History of James Webb Space Telescope • 1996: Next Generation Space Telescope project first proposed (8m) • 2001: NEXUS Space Telescope, a precursor to the Next Generation Space Telescope, cancelled • 2002: Proposed project renamed James Webb Space Telescope, (mirror size reduced to 6 m) • 2003: Northrop Grumman awarded contract to build telescope • 2007: Memorandum of Understanding signed between NASA and ESA[72] • 2010: Mission Critical Design Review (MCDR) passed • 2011: Proposed cancellation • 2016: Final assembly completed • 2021: Launch Achievements of James Webb Space Telescope In its short deployment, the JWST has been able to provide some exceptional data, ranging from beautiful pictures of galaxies and nebulas, the first of its kind image of an exo planet and details of exo planets atmosphere. Since its launch, scientists have been discovering galaxies far away and older than ever before, the launch of this observatory has truly made a breakthrough in space exploration. Some of its achievements are explained more in detail below: • To begin with, the JWST has been able to capture some of the most breath-taking and beautiful images of nebulae and galaxies, in both visible light and infrared spectrum. The new pictures have changed the way we had observed these subjects, giving us a deeper insight into the formation stars in these nebulae due to its higher resolutions. Some of the most iconic pictures from the JWST so far have been the pictures of the pillars of creation and the southern ring nebula. • Studying exoplanets have always been a challenge for scientists, as due to their size exoplanets are only visible through analysis of dips in luminance of its host star. But for the first time, the JWST using its infrared spectrometer and primary lens, was able to capture an image of an exoplanet directly. • During its observations, the JWST has been able to study and explore many star systems and in some cases, the exoplanets as well- going as far as studying their atmospheres in some detail, giving the research teams an insight into what these worlds may look like. • The JWST, while observing the deep space, has been able to capture the oldest galaxies known to mankind, dated as old as 13.4 billion years, 350 million years after the Big Bang. Future of Space Exploration and JWST The launch of the JWST marks a significant milestone in the field of space exploration. Not only has it opened up a new era of scientific discovery, but it has also introduced a new era for large space structures. The JWST, being the first self-assembling telescope launched in space, has proven that the only viable option for launching such a massive instrument is to make it segmented and assemble it in orbit. As we move forward, the ability to launch large structures in space that can be reassembled will undoubtedly lead to even more significant discoveries. With 6000 hours allocated for different observation missions, the JWST will enable researchers to work towards solving more of the unanswered questions regarding the cosmos. From deep space observation to exoplanet analysis, the possibilities are endless. Written by Zari Syed Related article: Lonar Lake

  • Neuroscience Articles 2 | Scientia News

    The field of neuroscience is rapidly expanding day by day. Study dopamine in the mesolimbic and nigrostriatal pathways; explore shattered brains in traumatic brain injuries; and delve into the mechanics of motion. Neuroscience Articles The field of neuroscience is rapidly expanding day by day. Study dopamine in the mesolimbic and nigrostriatal pathways; explore shattered brains in traumatic brain injuries; and delve into the mechanics of motion. You may also like: Biology , Immunology , Medicine Dopamine in the movement and reward pathways Aka the mesolimbic and nigrostriatal pathways Pseudo-Angelman syndrome A rare neurological disease that causes intellectual deficits. Article #10 in a series on Rare diseases. What does depression do to your brain? The biological explanation of Major Depressive Disorder (MDD). Article #1 in a series on psychiatric disorders and the brain. Neuroimaging and spatial resolution Which type of brain scan has it all? Beyond the bump A breakdown on traumatic brain injuries How does physical health affect mental health? The effects of exercise on the nervous system Mastering motion Looking at reflex, rhythmic and complex movements The brain of a bully The neurological basis of bullying Inside out: the chemistry of depression The role of neurotransmitters. Article #2 in a series on psychiatric disorders and the brain. Vertigo Physiology, causes, relevance Why brain injuries affect adult and children differently Differences in anatomical development, brain plasticity and learning stages are main reasons why Does being bilingual make you smarter? Looking at the neurological basis of bilingualism and multilingualism Previous

  • Economics | Scientia News

    Sharpen your knowledge on this subject with articles dissecting the branch of behavioural economics (the role of honesty, endowment effect, loss of aversion, libertarian paternalism, effect of time), among others. Economics Articles Sharpen your knowledge on this subject with articles dissecting the branch of behavioural economics (the role of honesty, endowment effect, loss of aversion, libertarian paternalism, effect of time), among others. You may also like: Maths The role of honesty Article #1 in a series on behavioural economics The endowment effect Article #2 in a series on behavioural economics Loss aversion Article #3 in a series on behavioural economics Libertarian paternalism and the 'Nudge' approach Article #4 in a series on behavioural economics

  • Is the immune system ‘selfish’? – a Dawkins perspective | Scientia News

    Richard Dawkins's work and the Modern Evolutionary Synthesis Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Is the immune system ‘selfish’? – a Dawkins perspective Last updated: 22/09/25, 10:59 Published: 25/09/25, 07:00 Richard Dawkins's work and the Modern Evolutionary Synthesis Evolution and Dawkins’ perspective Charles Darwin introduced the unprecedented theory of evolution by natural selection in his famous work ‘On the Origin of Species’, published in 1859. Gregor Mendel, who explained the concept of Mendelian genetics (the inheritance of genes), was a contemporary of Darwin, but his research was recognised much later on, beyond his time. In the 20 th century, the Modern Evolutionary Synthesis was formed and gave a foundation for how biological life has formed as we see it today. The Modern Evolutionary Synthesis is widely accepted and strongly supported by experimental and observational evidence across an array of life. Human beings have even leveraged these concepts for hundreds of years through artificial selection, imposing our own sometimes superficial selective pressures on organisms to express characteristics that we desire (such as the case of the Belgian Blue cattle, with a mutation in the myostatin gene making it a muscular, lean beef, or perhaps artificial selection in dog breeding). Richard Dawkins’ breakout book, ‘The Selfish Gene’, published in 1976, took him from an unknown voice at the University of Oxford passionate about the works of evolution across all animals, to a lauded voice in the scientific community. His concept of genes being selfish is the idea that natural selection works at the gene level, whereby genes over time become better at replication, with the organism acting as a ‘survival machine’ built to help genes propagate. It is important to note that the term ‘selfish’ is not meant metaphysically or philosophically. Figure 1 explains what ‘selfish’ means. Taking this further, it can be argued that genes helping organisms resist pathogenic attack are more likely to survive and propagate. This means the immune system does not exist to protect the body holistically but rather to protect its genes individually. The immune system evolved through the gene-centric lens As previously mentioned, the immune system has become integral to all complex organisms responding to pathogens as a selective pressure. Those genes that have conferred a greater ability to combat or resist a particular pathogen allow the organism an improved survival chance until reproductive age has been achieved. The window whereby the organism has reached reproductive maturity and is reproducing is what the genes have been selected to get, which is why many genetic pathways end up becoming detrimental to an organism in old age (explained by the antagonistic pleiotropy hypothesis- APT- and the disposable soma theory). This remains especially true for the immune system. One must also understand that only vertebrates are biologically equipped with an adaptive immune system (allowing for memory and effective response to previous pathogens), with Figure 2 explaining this difference. This supports that the immune system is a ‘selfish system’, as while many organisms survive without adaptive immunity, more complex organisms have evolved to include it because of our prolonged individual survival and delay in reproductive maturity (indicating that survivability until our reproductive window is an intense selective pressure). Immune imperfection through the ‘Selfish System’ lens We now understand there is a compelling point to be made that the immune system has evolved with the reproductive window in mind and to allow as much gene propagation in a population as possible. If we accept this point of view, it explains many of the trade-offs and imperfections of the immune system when we look at the potential harm caused by immunity. Allergies are one such example, whereby hypersensitivity causes an immune response to harmless substances, which, through the gene-centric lens, may have evolved to detect pathogens such as parasites. This further supports the ‘selfish system’ idea as reproductive success on a population scale is not impaired by a significant amount by allergies. One such study showed that women with allergies and asthma, despite having systemic inflammation, did not have a reduced fertility rate when analysing the relationship between an increase in allergic diseases in the 20 th century and a decrease in fertility globally. Chronic inflammation through persistent immune activation in old age (a concept termed inflammaging) is another such example. We previously mentioned that past reproductive age natural selection weakens, meaning that our genes are selected for early life immune optimisation, even if that means they cause problems later in old age. Processes such as cellular senescence, inflammasome activation, oxidative stress, immune cell dysregulation and so on begin to occur, leading to an increased risk of age-related diseases such as cardiovascular disease, cancer, dementia, sarcopenia and so on. Immune evolution is therefore a ‘selfish system’ because it seems to care more about gene propagation in the young to middle-aged years in comparison to long-term organism health, as many immune systems rapidly decline and become detrimental. Conclusion This perspective of the immune system as a ‘selfish system’ allows us to understand that it is not a protector of the organism throughout its life span, as we may perceive it to be, but rather that it is a mechanism evolved and optimised to propagate genetic material during the organism’s reproductive window (expanding beyond humans). This analysis of the immune system through Richard Dawkins' lens of the “selfish gene” helps us to understand many of the limitations of the immune system. Working on treatments to preserve and maintain the immune system’s healthy state, which reflects young adult life, appears to be a promising approach for future clinical prevention plans for old age diseases. There are many currently being researched and emerging treatments with this principle in mind, such as senotherapeutics and mTOR inhibitors (such as rapamycin and other rapalogs), making this an interesting field to keep up to date with. Written by Yaseen Ahmad Related article: Darwin and Galápagos Tortoises Project Gallery

  • How human activity impacts the phosphorus cycle | Scientia News

    Discussing eutrophication and industrial activities Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link How human activity impacts the phosphorus cycle Last updated: 27/12/25, 17:55 Published: 15/01/26, 08:00 Discussing eutrophication and industrial activities Phosphorus is one of the most important chemical elements in biology because it is a component of nucleic acids, ATP, and the phospholipid bilayers that make up our cell membranes. Like carbon and nitrogen, there is a limited amount of phosphorus on Earth, which is continually cycled between inorganic, organic, terrestrial, and aquatic sources. However, human activity disrupts the phosphorus cycle, resulting in some places having too much phosphorus and others having too little. This article will describe what the phosphorus cycle is and how we are affecting it. What is the phosphorus cycle? The phosphorus cycle involves phosphate ions (PO 4 3- ) moving between rocks, living organisms, and water bodies. Phosphate enters ecosystems when wind and rain break off tiny pieces of phosphate rock, primarily apatite, in a process called weathering. Weathered phosphate rock enters soil, where micro-organisms transform it into a form that plants can absorb through their roots (see my previous article on this process, called phosphate solubilisation). Plants convert inorganic phosphate into organic phosphorus compounds, such as DNA, ATP, and phosphoproteins, which are then transferred along the food chain. At each step of the food chain, phosphorus is returned to the soil by excretion from living organisms or decomposition of dead organisms. I call this the ‘organic mini-cycle’ from soil, to plants, to animals, and back to soil. Occasionally, phosphorus leaves the organic mini-cycle and enters water bodies by leaching or soil erosion. Phosphorus settles on the seabed and turns back into phosphate rock over hundreds of millions of years, completing the cycle. An overview is shown in Figure 1 . Humans disrupt the phosphorus cycle by eutrophication Deforestation, farming, and sewage overload water bodies with nutrients like phosphorus in a process called eutrophication. Agriculture is a big source of eutrophication, specifically fertilisers, organophosphorus pesticides, and animal feed. When it rains, they are carried from farm soil to water bodies by surface runoff and soil erosion. Human-caused deforestation exaggerates eutrophication because without tree roots, soil erosion increases, so more agricultural phosphorus enters water bodies. The other big eutrophication source is domestic sewage, which is dumped directly into water bodies. Fertilisers, pesticides, animal feed, and sewage provide algae with excess nutrients, so they overgrow into an algal bloom ( Figure 2 ). Algal blooms block sunlight from reaching submerged aquatic plants, so they cannot photosynthesise, and may produce toxins that kill aquatic life. Once the algal bloom dies, it is decomposed by bacteria, which use up oxygen in the water. With oxygen used up and no photosynthesis to replace it, fish and other aquatic animals die. Therefore, human phosphorus inputs like fertilisers and domestic waste can destroy aquatic ecosystems. Industrial activity depletes non-renewable phosphate rock While human activities overload water bodies with phosphorus, they deplete land of phosphate rock. Phosphate rock is mined and chemically reacted with sulfuric acid to produce fertiliser. Since phosphate rock is non-renewable, mining it permanently removes a crucial phosphorus input from the local ecosystem. 85% of phosphate rock is found in only 5 countries (China, Morocco, South Africa, Algeria, and Syria), so these countries are being depleted of phosphorus, only to overload another ecosystem with fertiliser thousands of miles away ( Figure 3 ). Scientists have suggested using agricultural waste and domestic wastewater as an alternative phosphorus source for fertiliser production. This would rebalance the phosphorus cycle on both ends: reducing the demand for non-renewable phosphate rock, and preventing eutrophication. Phosphorus can be recovered from waste and reused in fertiliser production in a variety of ways – acid leaching, isolating iron phosphate using a magnet, metal precipitation, and polyphosphate-accumulating micro-organisms, which use and store phosphate in their cells. However, the pollution and diseases present in sewage and farm waste make them difficult to recycle. Conclusion Phosphorus is an essential element for plant growth, so humans have manufactured fertilisers to provide their crops with extra phosphorus. However, fertiliser production depletes some ecosystems of phosphate rock, while fertiliser application causes eutrophication in other ecosystems. Along with domestic sewage and deforestation, agriculture has disrupted the natural cycle, which transports phosphate between plants, animals, micro-organisms, the soil, water bodies, and rocks. Therefore, making fertiliser by recycling the phosphorus in our waste products could keep the human population fed without compromising natural ecosystems. Written by Simran Patel Related article: Meet the microbes that feed phosphorus to plants REFERENCES Schipanski ME, Bennett EM. Chapter 9 - The Phosphorus Cycle. In: Weathers KC, Strayer DL, Likens GE (eds) Fundamentals of Ecosystem Science (Second Edition) . Academic Press, pp. 189–213. R. Jupp A, Beijer S, C. Narain G, et al. Phosphorus Recovery and Recycling – Closing the Loop. Chemical Society Reviews 2021; 50: 87–101. Khan MN, Mohammad F. Eutrophication: Challenges and Solutions. In: Ansari AA, Gill SS (eds) Eutrophication: Causes, Consequences and Control: Volume 2 . Dordrecht: Springer Netherlands, pp. 1–15. Akinnawo SO. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges 2023; 12: 100733. Liu L, Zheng X, Wei X, et al. Excessive Application of Chemical Fertilizer and Organophosphorus Pesticides Induced Total Phosphorus Loss from Planting Causing Surface Water Eutrophication. Sci Rep 2021; 11: 23015. Project Gallery

bottom of page