Search Index
355 results found
- Rabies- the scariest disease ever? | Scientia News
The rabies virus infects neurons Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Rabies- the scariest disease ever? 10/07/25, 10:31 Last updated: Published: 10/10/24, 11:05 The rabies virus infects neurons Rabies is a viral disease that primarily affects the central nervous system (CNS), usually in mammals. Wild animals such as foxes, dogs, and raccoons are frequent carriers of the virus. Transmission occurs through the saliva of an infected animal through a bite or a scratch, allowing the virus to enter the body and travel through the nervous system toward the brain. While rabies can be prevented with a vaccine, once symptoms begin to show, the disease is nearly always fatal once symptoms begin to show. What makes this virus so deadly, and how can it take control of the human body with just five genes in its genome? Why is the virus so hard to kill? To arrive at a sensible answer, we must first understand the ‘tropism’ of the virus – the cell type it likes to infect. Rabies virus infects the neurones (neurotropic), which creates a massive problem for the immune system. Macrophages and neutrophils, which are the prominent cells in killing foreign pathogens that kill foreign pathogens, usually deal collateral damage to the body’s own cells to some extent. This must be avoided with neurones, as neurones cannot replenish themselves after cell death. An inflammation of the nerve cells could lead to paralysis and seizures, compromising the CNS. As a result, the immune system response is significantly lowered around nerve cells to prevent accidental damage, which allows the virus to infect the neural pathway easily. Transmission of the virus See Figure 1 The strategy of the immune system is that the neurones can be protected if the pathogens are intercepted before they travel to their destination. However, this strategy ultimately fails when it comes to rabies, because the transmission is through a bite, which can penetrate and cut through many layers of tissue, providing a direct access to nerve cells. If you were bitten on the leg, then the time it takes for the rabies virus to travel to your brain would be the time it takes for you to travel from Florida, USA to Sweden. This may seem like a long time, but the rabies virus has evolved a technique that is able to hijack the cellular transport system can trick your cells’ transport system to travel quickly through the nerves by binding to a protein called dynein . Dynein is a motor protein that move along the microtubules in cells, converting the chemical energy of ATP into mechanical work. Microtubules are polarized structures, with a plus end (typically towards the axon terminal in neurones) and a minus end (towards the cell body). Dynein moves toward the minus end, facilitating retrograde transport, meaning it moves materials from the periphery of the cell, such as the axon terminals, back toward the cell body. Dynein is transports chemicals inside cells via endocytosis and plays a vital role in the movement of eukaryotic flagella. Rabies has evolved to stick to dynein via the Glycoprotein (G) present on its viral envelope, which allows rabies to travel to the brain much quicker. Dynein may be small, weighing around two megadaltons (3 x 10-18 grams), but it can move at a speed of 800 nanometres per second. At this speed, it takes rabies around 14 days to move up a metre- long neuron. This implies that the closer the animal bites you to the brain, the less time it takes for the symptoms to appear. If you’re bitten on the foot, it could take months for the virus to reach your brain. But if you’re bitten on the neck or face, the virus can get to your brain in just a few days, making it much more dangerous. This explains the broad range in the incubation time which is between 20 to 90 days. Infection and replication- see Figure 2 As the rabies travels through neuronal tracks, it sets up points of concentrated viral production centres called Negri bodies. These replicate the rabies virus within the neurones and inhibit interferon action, which are chemicals that alert white blood cells to the area of infection. Interferon inhibition along with lowered immune response to neurones make rabies extremely effective. However, neurones can undergo apoptosis—controlled cell death—to limit the spread of the virus and allow macrophages to clear the debris. Research in mice suggests that some strains of rabies may prevent this apoptotic response in cells. Additionally, studies indicate that rabies promotes apoptosis in killer T cells, which are responsible for inducing apoptosis in other cells. This mechanism helps to shield nerve cells from immune system attacks. Symptoms Patients with rabies initially experience flu-like symptoms and muscle pain. Once these early symptoms appear, treatment is virtually impossible. As the disease progresses, neurological symptoms develop including hydrophobia due to painful throat spasms when swallowing liquids. About 10 days after these neurological symptoms start, patients enter a coma, often accompanied by prolonged sleep apnoea. As virus attacks the brain throughout this stage, patients develop the urge to bite other organisms to transmit the virus. The virus can reach the salivary glands, allowing for transmission through a bite to occur again. Most patients typically die within three days of reaching this coma stage. Legends Rabies may have influenced the development of vampire and zombie myths due to its distinct symptoms. The disease causes aggression and sensitivity to light, which could have inspired some characteristics of vampires, such as their aversion to light and erratic movements. Additionally, rabies leads to excessive salivation and a tendency to bite, traits that align with vampire lore. Similarly, the delirium and motor dysfunction seen in rabies may have contributed to the depiction of zombies as shuffling, incoherent beings. Conclusion Rabies is a uniquely deadly virus due to its mechanism of hijacking the nervous system. After entering the body, the virus binds to dynein, using it to travel along neuronal pathways toward the brain. It replicates rapidly, forming Negri bodies disrupting neurone function. The virus effectively suppresses immune responses, making it nearly impossible to treat once symptoms appear, leading to almost 100% fatality. Beyond its biological impact, rabies has influenced cultural stories like those of vampires and zombies, with its symptoms—such as aggression, fear of water, and neurological decay—providing eerie parallels to these myths. Despite modern medical advances, rabies remains one of the most feared infectious diseases due to its fatal nature. Written by Baraytuk Aydin Related articles: Rare zoonotic diseases / rAAV gene therapy REFERENCES CUSABIO (2020) Rabies virus overview: Structure, transmission, pathogenesis, symptoms, etc, CUSABIO. Available at: https://www.cusabio.com/infectious-diseases/rabies-virus.html (Accessed: 12 September 2024). Hendricks, A.G. et al. (2012) Dynein tethers and stabilizes dynamic microtubule plus ends, Current biology : CB. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347920/ (Accessed: 13 September 2024). Lahaye, X. et al. (2009) Functional Characterization of Negri Bodies (NBS) in rabies virus-infected cells: Evidence that NBS are sites of viral transcription and replication, Journal of virology. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715764/ (Accessed: 13 September 2024). Tarantola, A. (2017) Four thousand years of concepts relating to rabies in animals and humans, its prevention and its cure , MDPI . Available at: https://www.mdpi.com/2414-6366/2/2/5 (Accessed: 15 September 2024). Project Gallery
- Oliver Sacks | Scientia News
A life of neurology and literature Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Oliver Sacks 10/07/25, 10:26 Last updated: Published: 21/01/24, 11:54 A life of neurology and literature If I had to credit one person for introducing me to the subject that would become my career choice, it would be Oliver Sacks. Trying to develop my interests and finding myself in a world of science textbooks that sounded too complicated – and often simply pedantic – made me desperate to find something that could somehow combine my love for science and my fondness for literature. Luckily, I managed to stumble upon “the poet laureate of literature”, a physician who presented real characters with true medical cases without putting a teenage girl to sleep. Oliver Wolf Sacks was born in London in 1933. He grew up in a family of doctors; his mother was one of the first female surgeons in England and his father, a general practitioner. His interest in science started at a young age, experimenting with his home chemistry set. Following in his parents’ footsteps, he went on to study medicine at The University of Oxford before moving to the US for residency opportunities in San Francisco and Los Angeles. Although he enjoyed the sweeter life on the West Coast, by 1965 he decided to take a more permanent residence in New York, where he continued to work as a neurologist as well as eventually teaching at Columbia and NYU. It was in the city of dreams where he started his literary journey. One of his main creative inspirations was born from his time as a consultant neurologist at Beth Abraham Hospital in the Bronx. There, he found a group of patients who had been in a catatonic state due to encephalitis lethargica. They appeared frozen, trapped in their own bodies, unable to come out. Sacks decided to start a series of trials with L-Dopa, a dopamine precursor drug which was then still in the experimental stage as a treatment for Parkinson’s. Almost miraculously, some of the patients started “waking up” and regaining some movement ability. Although the treatment was not without flaws, the satisfaction of helping his patients and the close relationships he came to develop with them after caring for them for months really touched Sacks. In 1973, he published his narration of the events in Awakenings , a bestseller that was later adapted into a film of the same name starring Robin Williams and Robert de Niro. Oliver Sacks went on to write about music therapy, a rare community of colourblind individuals and his own experience both as a doctor and as a patient, among others. His most notable works are probably “The Man Who Mistook His Wife for a Hat” and “An Anthropologist on Mars”. Both describe in detail fascinating case studies, ranging from more known conditions such as Parkinson’s, epilepsy and schizophrenia, to other relatively more obscure diagnoses at the time including Tourette’s, musical hallucinations and autism. The condition that took my attention the most when reading “The Man Who Mistook His Wife for a Hat” was that which gives the book its title. The man who could not tell apart his hat from his spouse was diagnosed with agnosia: the inability to recognise objects, people or animals as a result of neurological damage along pathways connecting primary sensory areas. Agnosia can affect visual, auditory, tactile or facial recognition (prosopagnosia), or a combination of these. Crucially, Sacks’s works showcase not only a recount of symptoms and abnormalities, but a tale of people who retained their humanity and individuality beyond their medical diagnoses. As he told People magazine in 1986, he loved to discover potential in people who weren’t thought to have any. Instead of merely fitting patients into disease, he liked. To observe how they experienced the world in their unique ways, recognising difference as a path to resilience rather than just a handicap. Written by Julia Ruiz Rua Project Gallery
- COVID glossary | Scientia News
By no means is this an exhaustive list on all the terminology relating to the COVID-19 pandemic. For more information, please refer to the World Health Organisation (WHO) and the Centers for Disease Control and Prevention (CDC). AAdenovirus- a group of related viruses. They were first removed from human adenoid glands (found at the back of the throat), hence the name. Asymptomatic- where a person is infected by the virus but does not present any symptoms. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Glossary for COVID-19 terms Last updated: 23/01/25 Published: 28/12/22 Key terms By no means is this an exhaustive list on all the terminology relating to the COVID-19 pandemic. For more information, please refer to the World Health Organisation (WHO) and the Centers for Disease Control and Prevention (CDC). – A Adenovirus- a group of related viruses. They were first removed from human adenoid glands (found at the back of the throat), hence the name. Asymptomatic- where a person is infected by the virus but does not present any symptoms. Can still pass the virus and infection onto others. C Coronavirus- a group of related viruses that cause diseases in mammals and birds. Named after the crown-like spike protein on the virus’s surface- ‘corona’ in Latin for crown. COVID-19/ COVID – the disease that coronavirus causes D DNA- deoxyribonucleic acid, the cell’s code to life. DNA instructs how to make proteins, which are essential for function in the body. Double helix. E Epicentre- the central point of the virus outbreak. This changed during the COVID-19 pandemic depending on the variant of virus. Epidemic- an outbreak in a localised area at a particular time H Herd immunity- when enough people are protected against the disease, that it lends immunity to those who are not protected. Can achieve protection against the disease through either previous infection, and/ or vaccination. I Immunity- achieving immunity means to be protected from future infections by viruses, and bacteria for example. You can achieve immunity through either previous infection, and/ or vaccination. Immunosuppressed- the immune system is suppressed. In other words, people who are immunosuppressed have a reduced ability to fight diseases. Thus preventing them from being infected in the first place is of great importance. Infection- the unnormal invasion of microorganisms into the body. Some infections present symptoms- at least straight away- while others do not show any symptoms. L Lockdown- preventing people from leaving where they are, to stop the transmission and contain the virus in the COVID-19 pandemic. M Mass vaccination- vaccinating many people in a certain area at a particular time mRNA- messenger RNA (ribonucleic acid). Single helix. Acts as a go-between for DNA and the proteins that are being made. P Pandemic- a global, or national outbreak Protein- an important molecule. Used as a fuel source, a building block, a carrier among other things, in the human body. R Restrictions- impeding or hindering movement and travel during the COVID-19 pandemic, in order to contain the spread of the virus and curb transmission. S Shedding- (in biology) refers to viruses casting off viral particles which can then infect others Side effects- effects that are different and potentially harmful from the main, intended effects of a medication, treatment, or vaccine. Examples of some side effects: headaches, aches, pains, fever. Symptomatic- where a person is infected with the virus and does present symptoms. Can still pass the virus and infection onto others. Symptoms- the signs a person has been infected; this can be physical or mental. With COVID-19, you can show symptoms as symptomatic, or not present symptoms as asymptomatic, if infected. Examples of symptoms for COVID-19 include loss of taste and smell, a persistent cough, fever. T Transmission- how a particular disease, in this case coronavirus, is passed from one person to another. V Vaccination- the administration of vaccine into the body. Vaccine- a form of active immunity, where a weakened, live version of the infection agent is administered into the body. The immune system kicks in and destroys the infection agent, but not before taking note of the genetic material (e.g. mRNA or DNA from the protein) from the agent. The immune system will use this genetic material to ‘remember’ the infection next time it appears, so it can prepare a speedier, more efficient response. Vaccine hesitancy- uncertainty as to whether people should take the vaccine. This could be due to a variety of reasons: being unfamiliar with the vaccine and its contents, and/ or being distrusting of the government and those in the health organisation. Viral load- the amount of virus (or viral genetic material) a person has in their body at a particular time. A person not infected with the virus will have no viral load, whereas a person infected with the virus will have a much higher viral load. Virus- a microorganism. Some spread diseases as vectors, while some are ‘better’. To date, it is being argued whether viruses are alive or not. W Wuhan- Capital of Hubei Province in China. First epicentre of coronavirus. Written by Manisha Halkhoree Related article: The origins of COVID-19
- Biology Articles | Scientia News
Dive into the latest biological research! Read about animal testing and ethics, discover how moving houses can affect your health in gentrification, and learn how specific organisms can survive in the extreme cold. Biology Articles Dive into the latest biological research! Read about animal testing and ethics, discover how moving houses can affect your health in gentrification, and learn how specific organisms can survive in the extreme cold. You may also like: Cancer , Ecology , Genetics , Immunology , Neuroscience , Zoology , and Medicine Animal testing and ethics A breakdown on the practices and procedures Gentrification in the context of health How does moving houses impact your well-being? Cryptosporidium crisis Investigating the outbreak in Devon, UK in May 2024 Survival secrets of the Arctic springtail How do springtails (Collembola) survive the extreme cold? An introduction to stem cells Cells that can differentiate into any other type of cell. Article #1 in a series on stem cells. Monkey see, monkey clone An outline of recent discoveries in cloning research Are we doing enough to fight anti-fungal resistance? Preventing fungal infections in the body The chronotypes Demystifying the body clock Last updated: Mesenchymal stem cells Cells that can differentiate into connective and lymphatic tissues, and blood vessels. Article #2 in a series on stem cells. Discovery of channel-blocking nanoparticles A solution to plant diseases The effects of nanoparticles on (gut) health Looking at the nanoparticle silicon dioxide Yemen- a neglected humanitarian crisis Impacts of war and arms trade on health. Article #3 in the Global Health Injustices Series. Health gaps in conflicted Kashmir Impact of war and conflict on health. Article #5 in the Global Health Injustices Series. A deep, critical reflection How colonialism, geopolitics and health are interwoven. Article #7 in the Global Health Injustices Series. Previous The interplay of hormones and the microbiome A look at how hormones can affect the gut Health and well-being of Palestinians Impact of war on health. Article #1 in the Global Health Injustices Series. Civil war in Sudan Impact of war on health. Article #2 in the Global Health Injustices Series. Circadian rhythms and nutrition How nutrition timing plays a part in circadian rhythms Syria and Lebanon's diverging yet connected struggles Health challenges stemming from war. Article #4 in the Global Health Injustices Series. Health in Bangladesh's Rohingya community Health challenges stemming from oppression. Article #6 in the Global Health Injustices Series. Next
- 'Intern Blues' by Robert Marion, M.D. | Scientia News
Book review Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link 'Intern Blues' by Robert Marion, M.D. 08/01/26, 18:59 Last updated: Published: 01/09/24, 12:30 Book review The public's glimpse of a doctor’s life varies depending on the doctor. Popular TV shows like Grey’s Anatomy , New Amsterdam , and Private Practice allow keen viewers to follow the romanticised lives of doctors, from their heroic moments to the romances and tragedies that take place in their hospital shifts. Similarly, social media platforms have been filled with doctors and medical students glamourising their experience with hashtags and filters, focusing on the positive but hardly ever commenting on their negative experiences. Additionally, flashy news articles celebrate a doctor’s innovative and ground-breaking methods and attempts to save a lucky patient’s life. In particular, doctors were placed in the spotlight during the COVID-19 pandemic, being seen as the real-life superheroes of the pandemic. On the other hand, in 2023, the televised NHS doctors’ protests presented the struggles and hardships endured by the professionals. Furthermore, a report by the General Medical Council in 2022 found that 50% of doctors were unhappy in their workplace. Simply put, the public’s perspective towards medicine and a doctor’s life will differ depending on their source and possibly their personal experiences. Therefore, how can one understand the world through the eyes of a doctor without studying and working within the profession? This question may never have a perfect answer, but the book Intern Blues by Robert Marion could be considered a step in the right direction. This book explores the life of three first-year interns (Amy, Adam, and Mark) in New York paediatric hospitals during the mid-1980s. After meeting his new interns and learning about the fear and outsider syndrome they felt toward the coming year, Dr. Robert Marion encouraged them to document their experiences during their year as interns to reflect and possibly learn through their achievements and struggles. Unknowingly, Dr Marion’s advice created the concept behind this inspiring book. The book explains treatment methods, their reasoning, and the medical abbreviations, making any reader feel like a doctor. This is emphasised by the vividly descriptive writing and the constant log of emotions, allowing anyone to experience the vibrant rush of a hospital from the comfort of their home. One of the best things about this book is each intern’s contrasting perspectives on such supposedly similar experiences. The first intern, Andy Baron, explored his struggles of living far from his family and girlfriend due to his awkward working hours and his feelings that his loved ones do not understand what he is going through. On the other hand, Amy Horowitz has an intriguing perspective of being a mother of a young child, presenting to the reader the struggles with viewing her own child in her patients' eyes and how she surpassed this challenge to succeed in her work. In contrast, Mark Greenberg has an interesting and almost humoristic negative perspective towards his experience – one should note that, at times, some of his entries are quite shocking with their abruptness and pessimistic view. On the other hand, one of the few limitations to note in this book would be the timing. Having taken place in the 1980s, the reader should note that some elements have changed and evolved over the years. However, one could argue that this difference in 40 years gives a uniqueness to the book as it allows for a comparison and reflection on how medicine has changed. For instance, there is a brief exploration of the struggle that Amy faced as a doctor: struggles that in some way stem from how being a woman made others view her differently from her male colleagues. Although these same struggles may not apply to female doctors in the present, the Amys of 2024 encounter their own challenges. Moreover, the book provides an interesting reflection on how the HIV pandemic changed medicine and forced the medical community to adapt – which, for many readers, can resonate with the recent COVID-19 pandemic. Intern Blues is an entertaining read that will make its readers want to hug their siblings and appreciate their lives differently. This book will elicit laughs, tears, and moments of profound contemplation - a rollercoaster of emotions filled to the brim with intriguing medical cases. Presenting the hardships these three doctors faced, one has the opportunity to reflect and decide for themselves: does the good outweigh the bad? What causes the balance to tip? Is a doctor’s life made for them? Nevertheless, one conclusion is constant: the newfound admiration for the healthcare community. Check out this book on Amazon Written by Inês Couto André Related article and book reviews: Healthcare serial killers / The Emperor of All Maladies / The Molecule REFERENCES Marion R. The Intern Blues: The Timeless Classic about the Making of a Doctor. Reprint edition. William Marrow & Company; 2001. General Medical Council. The State of Medical Education and Practice in the UK, Workplace Experiences 2023 [Internet]. General Medical Council. 2023 June. Available from: gmc-uk.org/stateofmed . Project Gallery
- Cancer biomarker and evolution | Scientia News
When deciding on the treatment of diseases, experts must gain as much relevant information as they can about that disease, before acting on an informed decision. When cancer is suspected, it might be that the decision for future treatment and prognosis be heavily weighted on the results of biopsies Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Cancer biomarker and evolution Last updated: 27/02/25 Published: 30/01/23 Development of Novel Biomarkers by Studying Cancer Evolution What does cancer evolution mean to cancer diagnosis and prognosis? How does studying it provide a better outlook on cancer precision medicine? =================== When deciding on the treatment of diseases, experts must gain as much relevant information as they can about that disease, before acting on an informed decision. When cancer is suspected, it might be that the decision for future treatment and prognosis be heavily weighted on the results of biopsies. After all, this is the standard for diagnosing many cancers. It takes one needle to take “information” that is used to predict patients’ outcomes and their respective treatment options, in other words, a test that might just predict their future. Cancer is an evolving disease. There have been many studies over the decades that demonstrate solid cancers’ singular-cell origins. Other studies show how cancer may evolve from a single cell to a mass of cells through Darwinian or branched evolution. This also implies that many things that apply to other evolutionary phenomena also apply to evolving cancer lines: mutation, genetic drift, selection and their selection pressures. In the end, what originated from one cell turns out to be a tumour with a unique genetic landscape, made up of numerous cancer subpopulations, each with its own unique genotypic and phenotypic profile and each of these subpopulations of cancerous cells evolving on its own. This phenomenon is more commonly referred to as intratumor heterogeneity (ITH). What all of this means to biopsies, is that when a single-site needle biopsy is done, it might not give an accurate representation of the whole tumour. The tumour itself, depending on its stage of development may be quite uniform with minimal ITH, however, it may also, in the eyes of a geneticist, look like a mosaic with multiple different “populations” of cancerous cells. Say, for example, the biopsy is aimed to target certain biomarkers (e.g. single nucleotide polymorphisms (SNPs)) or other “landmarks” such as satellites, the biopsy will only view whatever the needle so happened to have sampled. In other words, sampling could have made it look like a mosaic is red, even though the majority of the mosaic at the time is blue, but it seemed red for we only found red during the biopsy. Additionally, this mosaic is changing, new colours may emerge just like new lines arise within the same tumour. ITH introduces what is known as sampling bias, where samples taken from biopsies only provide an overview or snapshot of the tumour at its state and only pick up on one piece of the actively evolving puzzle, potentially missing many details, in this case, biomarkers from other tumour subpopulations. To solve the issues of ITH, scientists participating in the TRACERx research consortium are employing unique methods to sample tumours in an approach to cancer evolution. The research involved using multiregional sampling and RNA sequencing to sample tumours from patients with non-small cell lung cancers (NSCLC) at different timestamps, i.e. during the various stages of cancer development, metastasis and relapse. By using this approach, the team managed to document better how cancer evolves and how the genomic landscape and tumour architecture changes over time. Furthermore, they succeeded in honing genes that are uniformly conserved and expressed throughout the tumour, even after the effects of ITH. The research looked over 20,000 expressed genes and found 1,080 genes that despite cancer evolution and ITH, are relatively conserved and clonally expressed, relatively unaffected by sampling bias. Furthermore, using machine learning, 23 genes (from the 1,080) were found to be predictive of patient outcomes. Meaning, this novel set of genes or “biomarkers” may be used as a basis for prognosis and to predict mortality in NSCLC. This novel biomarker is named ORACLE or Outcome Risk Associated Clonal Lung Expression signature and scientists are hopeful that it may be used to determine the relative aggressiveness of lung cancers, whilst maintaining a robust function unaffected by ITH. By targeting ORACLE, it mattered less where the biopsy needle is placed on the tumour, as these genes are found clonally. In terms of its effectiveness, a trial shows that having high scores of ORACLE signatures is associated with an increased risk of death within five years of diagnosis. In addition, other trials show that by targeting ORACLE, scientists were able to identify patients with a substantial risk of poor clinical outcomes. Overall, research on the application of ORACLE has shown satisfactory results in predicting patient outcomes and is found to be relatively resistant to the confounding effects of ITH. In summary, we have seen what cancer evolution may cause, and how it shadows the effectiveness of conventional biopsies and biomarkers due to sampling bias in ITH. We also find the research by the TRACERx Consortium and how they aim to study the effects of cancer evolution and ITH, finding a set of genes that are found and expressed throughout the tumour, yet still provide a favourable measure to patient outcomes. Whilst these topics are still under active research, it is clear, how studying cancer evolution and changing the approach to biopsies and biomarker designs can improve the overall quality of diagnosis and cancer prognosis. After all, finding what is wrong is as important as fixing the problem. We hope that similar biomarkers may be developed in the future, applicable to many other types of cancers. Written by Stephanus Steven Related articles: Thyroid cancer / Arginine and tumour growth / NGAL- a marker for kidney damage REFERENCES Biswas, D. et al. (2019) “A clonal expression biomarker associates with lung cancer mortality,” Nature Medicine, 25(10), pp. 1540–1548. Available at: https://doi.org/10.1038/s41591-019-0595-z. Header image: Lung cancer cells. Anne Weston, Francis Crick Institute. Attribution-Non-Commercial 4.0 International (CC BY-NC 4.0)
- Artificial intelligence in space | Scientia News
AI in developing space technologies Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Artificial intelligence in space 09/07/25, 10:56 Last updated: Published: 19/11/23, 17:31 AI in developing space technologies Artificial intelligence or AI has become an important force or a tool that drives the evolution of technologies that improve human life and helps unlock the secrets of the universe beyond the influence of our planet. In simple words, AI is something that enables a computer/ robot to mimic human intelligence and it is revolutionizing the way we explore and utilize space, enhancing everything from spacecraft navigation and autonomous decision-making to data analysis and mission planning. This article explores the profound impact of AI in the development of space related technologies. Mission planning and design Space mission planning and payload, instrument designs rely on the gathered previous mission data. However, access to all the historic mission data is only provided to individuals with a higher authority access at the space agency which requires a lot of paper works and approvals. But recently NASA came up with a solution and they named it as the “Data Acquisition Processing and Handling Network Environment” (DAPHNE) system. Daphne is an AI assistant which can access millions of previous mission data including the most restricted ones and provide the scientists an insight about their mission without the need of a higher authority access or security clearance. It can also compute and analyze countless input variables to determine the most efficient routes and schedules for missions, which is crucial for long-duration missions or missions with multiple objectives. Manufacturing Manufacturing processes usually involves complex tasks that requires high precision and attention to detail when it comes to space related applications. The use of AI in spacecraft manufacturing not only accelerates production but also increases precision and reliability. Ai assistants like collaborative bots (cobots) interacts with the engineers and help them to make the right decisions, reduce the overall assembly process time and also provide insights about the final product which ensures that the spacecrafts are built to the highest standards. Data processing Space missions generate vast amounts of data, from images and telemetry to instrument readings. AI algorithms are capable in sifting through this data, identifying patterns, and extracting meaningful insights. An example is the estimation of planetary wind speed which requires a combination of the satellite imagery and meteorological data. AI tools can rapidly analyze these large datasets and help scientists in understanding these planetary phenomena and easily uncover its secrets. This capability is also valuable in missions to study distant galaxies, black holes, and exoplanets. Navigation & guidance systems One of the critical applications of AI in space technology is autonomous navigation. Spacecraft traveling vast distances through the cosmos must constantly adjust their trajectories to avoid collisions with celestial bodies and maximize their fuel efficiency. Advanced AI systems can process data in real-time and autonomously adjust a spacecraft's course. This not only reduces the need for constant human intervention from the ground station but also allows for more precise and efficient missions. Astronaut health monitoring Astronauts in space face a range of health issues like bone density loss, cardiovascular issues etc. The AI systems can continuously monitor physiological data and provide an insight into the astronaut’s health condition including sleep patterns. This allows early detection of health issues and timely intervention which reduces the need for immediate communication with ground mission control, ultimately safeguard the safety of the astronauts on long-duration missions. In summary, AI is a tool that represents a transformative shift in how we explore and understand our cosmos and its secrets. One day AI will play an even more significant role in the future that pushes the boundaries of space and bring us closer to answering some of humanity’s most profound questions. Written by Arun Sreeraj Related articles: Astronauts in space / AI in drug discovery / Evolution of AI / Chemistry in space exploration Project Gallery
- The spread of digital disinformation | Scientia News
IT cells and their impact on public opinion Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The spread of digital disinformation 14/07/25, 15:04 Last updated: Published: 05/08/23, 10:06 IT cells and their impact on public opinion As of January 2023, the internet boasts a staggering 4.72 billion estimated social media accounts, with a 3% year-on-year growth of +137 million users and further expansion projected throughout the year. The average person now spends a substantial 6 hours and 58 minutes daily connected to online screens, underscoring the significant role the internet plays in our lives. Consequently, it comes as no surprise that governments worldwide have recognised its potential as a critical tool to advance their agendas, policies, and achievements. Through diverse digital channels, governments aim to reach a vast audience and change public perception, striving to build transparency, trust, and legitimacy while maintaining a powerful digital presence. However, this approach also raises concerns about bias, propaganda, and information manipulation, which can impact public perceptions in questionable ways. One such phenomenon that has emerged is the presence of IT cells, organised groups typically affiliated with political parties, organizations, or interest groups. These Information Technology cells dedicate themselves to managing and amplifying their respective organisations' online presence, predominantly on social media platforms and other digital avenues. During contentious political events or national issues, IT cells deploy coordinated messaging in support of government policies and leaders, inundating social media platforms. Unfortunately, dissenting voices and critics may face orchestrated attacks from these IT cells, aimed at discrediting and silencing them. While some IT cells may operate with genuine intentions, they have faced criticism for engaging in tactics that spread misinformation, disinformation, and targeted propaganda to sway public sentiment in favour of their affiliated organisations. In such instances, IT cells strategically amplify positive news and government achievements while downplaying or deflecting negative information. Social media influencers and online campaigns have become tools to project a positive image of the government and maintain public support. One striking example of how governments can exploit IT cells for their gain was evident in the infamous Cambridge Analytica scandal. In 2018, revelations exposed how the political consulting firm, Cambridge Analytica, acquired personal data from millions of Facebook users without consent. The firm then weaponised this data to construct highly targeted and manipulative political campaigns, including during the 2016 United States presidential election and the Brexit referendum. In India, the ruling BJP party has come under scrutiny for its orchestrated online campaigns through its social media cell. The cell allegedly intimidates individuals perceived as government critics and actively disseminates misogyny, Islamophobia, and animosity. According to Sadhavi Khosla, a BJP cyber-volunteer associated with the BJP IT Cell, the organisation promotes divisive content and employs trolling tactics against users critical of the BJP. Journalists and Indian film actors have also found themselves targeted by these campaigns. As technology continues to evolve, it is imperative to strike a balance between leveraging the internet for transparency and legitimacy while safeguarding against potential misuse that could erode trust in digital governance and public discourse. Monitoring and addressing the activities of IT cells can be a significant step towards ensuring responsible and ethical use of digital platforms in the political arena. Written by Jaspreet Mann Related articles: COVID-19 misconceptions / Fake science websites Project Gallery
- Smoking cessation | Scientia News
Lung cancer can be defined as the uncontrollable growth of abnormal epithelial cells that make up the lung. Smoking is known to be a main risk factor of lung cancer being responsible for at least 70% of lung cancer cases. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Smoking cessation interventions Last updated: 18/11/24 Published: 10/03/23 Lung cancer can be defined as the uncontrollable growth of abnormal epithelial cells that make up the lung. Smoking is known to be a main risk factor of lung cancer being responsible for at least 70% of lung cancer cases. Burning cigarettes release multiple mutagens and carcinogens which are absorbed and metabolised by the body to cause cancer. The incidence of lung cancer is increasingly becoming worrying due to its high preventability rate of 79% according to the National Cancer Research Institute. This highlights the importance of reducing the incidence of lung cancer and consequently the deaths caused by it and the burden on the NHS and economy. There recently has been a surge in the use of E-cigarettes in comparison to cessation clinics as a cessation tool to prevent lung cancer. Clearly, there is a need to determine the effectiveness of E-cigarettes being used as a smoking cessation tool. Over the years researchers have investigated different cessation techniques such as specialist clinics, therapy, and patches. The purpose of this research was to evaluate the effectiveness of e-cigarettes as a smoking cessation tool to prevent cancer in primary care. The research suggests that E-cigarettes are more commonly and successfully being used as an effective smoking cessation tool in primary care. The research also suggests that the implementation of smoking cessation clinics has helped to reduce the prevalence of smoking. Both E-cigarettes and smoking cessation clinics are useful in reducing the prevalence of smoking and therefore the incidence of lung cancer. However, it is important to acknowledge some of the carcinogens that E-cigarettes possess such as nicotine which can adversely promote cancer growth. This begs the question of the efficacy of E-cigarettes in reducing lung cancer incidence. Predominantly not smoking at all remains the safest option to reduce the chances of lung cancer. Nonetheless, the reduction in funding for Smoking Cessation clinics in primary care should be reviewed given that it was an effective enough strategy in reducing lung cancer incidence. More research (particularly longitudinal studies) is also required into the efficacy of E-cigarettes in reducing lung cancer incidence and the potential long-term effects they could have. Written by Latilda Ajani Related article: Genetics of excessive smoking and drinking
- Can what we eat, breathe, and do for a living affect our Parkinson’s risk? | Scientia News
New research suggests that the cause extends far beyond the nervous system Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Can what we eat, breathe, and do for a living affect our Parkinson’s risk? Last updated: 21/03/25, 11:59 Published: 10/04/25, 07:00 New research suggests that the cause extends far beyond the nervous system Introduction Parkinson’s disease (PD) is the most prevalent movement disorder and the second most common neurodegenerative disorder worldwide. PD is best known for causing tremors and stiffness, but it’s much more than a movement disorder. It also affects mood and speech. While PD is caused by the loss of dopamine-producing neurons in the brain’s substantia nigra, new research suggests that its roots may extend far beyond the nervous system. Surprisingly, the gut microbiome – trillions of bacteria living in our digestive tract – may play a key role in both the development and prevention of PD. These microbes help regulate inflammation and support brain health by influencing microglia, the brain’s immune cells. Diet also seems to matter: a Mediterranean-style diet rich in fruits, vegetables, and healthy fats appears to lower PD risk, while smoking – despite its well-known dangers – has been linked to a puzzling protective effect, possibly due to nicotine’s impact on the brain. Meanwhile, specific jobs, like farming, may increase PD risk due to pesticide exposure, which has been associated with neurodegeneration. The idea that what we eat, breathe, and do for a living could shape our brain health is intriguing. As research continues to uncover these surprising links, it raises an important question: could simple lifestyle changes help protect against neurodegenerative diseases? Gut-Brain Axis The gut-brain axis (GBA) is a two-way communication network between the enteric nervous system of the gastrointestinal (GI) tract and the central nervous system, connecting emotions and cognition with the intestines’ functions. This involves the brain sending signals to the gut and vice versa, which happens through the vagus nerve, gut hormones and the gut microbiome, which can produce chemicals to impact brain activity. This usually explains why stress signals from the brain can influence the digestion of food, causing symptoms such as stomach pain, bloating or changes in bowel movements. Alternatively, signals travelling from the gut to the brain can be seen when we eat something that makes us feel sick – we naturally avoid that food and the place where we ate it. Gut dysbiosis can be triggered by multiple factors, including diet, antibiotic use, infection, inflammation, and chronic stress. Dysbiosis is the imbalance in the composition and activity of the microbiota (microorganisms present in the gut). It is considered a risk factor for PD, but is not a direct cause of it. Changes in the microbiota can induce metabolic changes, which can result in increased local and systemic inflammation in addition to increased permeability of the intestines, making the gut ‘leaky’. Additionally, this can cause increased harmful gut bacteria (such as E. coli or Salmonella ) as they leak through the intestinal lining, producing amyloid proteins which can travel to the brain and cause the accumulation of α-synuclein – a protein linked to neurodegenerative diseases such as PD. There is also a reduction in healthy gut bacteria – which usually produce short-chain fatty acids (SCFAs) such as butyrate – which reduce inflammation and protect the brain cells. Less SCFAs cause an increase in inflammation and loss of the neuroprotective effects of SCFAs. Increased inflammation can eventually cause the weakening of the gut lining and a cycle of worsening dysbiosis, increased inflammation and increased α-synuclein accumulation, which spreads to the brain. Furthermore, gut dysbiosis can decrease the efficacy of dopaminergic treatments, which may be used to treat PD. In gut dysbiosis, harmful bacteria can produce an enzyme called dopa-decarboxylase – which converts Levodopa (a drug used to treat PD) into dopamine within the intestines. Hence, less Levodopa reaches the bloodstream and the brain, where it primarily acts and is converted to dopamine. This results in less Levodopa being converted to dopamine within the brain, reducing the effectiveness of the treatment. Consequently, this leads to motor symptoms and impairments such as tremors, which is a characteristic symptom of PD. Can food protect the brain? Could your diet be influencing your brain health in ways you never imagined? Research suggests that what you eat might play a critical role in either protecting your brain from PD or increasing your risk. People who follow a Mediterranean diet (MD) – rich in olive oil, fish, fruits, vegetables, whole grains, and nuts – may have up to a 25% lower risk of developing PD. Interestingly, this protective effect appears stronger in younger individuals and those in the early stages of PD. So.. what makes the MD so powerful? Gut microbiome boost: the MD promotes beneficial gut bacteria while reducing harmful microbes, supporting overall brain health. Anti-inflammatory effects: fibre from plant-based foods fuels the gut microbiome, leading to the production of SCFAs, which reduce inflammation and may slow PD progression. Mitochondrial protection: compounds in the MD, such as polyphenols in olive oil and omega-3 fatty acids in fish, help repair and protect mitochondria – the powerhouses of our cells. This helps prevent brain cell damage and maintain dopamine function. Neural growth & repair: walnuts and omega-3s may support neuronal growth and reduce protein clumping, a hallmark of PD. On the other hand, a Western diet – high in processed foods, saturated fats, refined sugars, and excess salt – may increase the risk of developing and worsening PD symptoms. Foods commonly associated with faster PD progression include canned fruits and vegetables, soda, fried foods, beef, ice cream, and cheese. Why does this happen? Microbiome disruption: the Western diet fosters an imbalance in gut bacteria, leading to inflammation and potential brain damage. Gut leakiness and neuroinflammation: a diet high in unhealthy fats and low in fibre can damage the gut lining, allowing harmful substances to enter the bloodstream and trigger brain inflammation. Hormonal imbalance: key gut-derived hormones (GLP-1, GIP, and IGN) that help protect neurons are disrupted by poor diet but can be restored through healthier food choices. While diet alone cannot cure PD, growing evidence suggests it can modify the disease course. A diet rich in fibre, healthy fats, and plant-based foods supports gut health, reduces inflammation, and may protect neurons from degeneration. Understanding these diet-microbiome-brain interactions could open new doors to PD prevention and treatment – proving once again that food truly is medicine. The smoking paradox One of the most intriguing findings in PD research is that smokers appear to have a lower risk of developing the disease. Epidemiological studies consistently show that people who smoke are less likely to be diagnosed with PD compared to non-smokers. But why? Scientists believe that nicotine, a key compound in tobacco, may play a neuroprotective role by affecting dopamine-producing neurons – the same cells that are progressively lost in PD disease. Nicotine interacts with receptors in the brain that influence dopamine release, which could help protect these neurons from degeneration. However, clinical trials testing nicotine as a treatment for PD have not shown significant benefits, suggesting that other compounds in tobacco or alternative mechanisms might be involved. Some researchers propose that additional chemicals in cigarette smoke, such as monoamine oxidase inhibitors, antioxidants, or even carbon monoxide at low levels, might contribute to this protective effect. Others suggest that genetic factors or lifestyle differences between smokers and non-smokers could also explain the association. Despite this fascinating link, smoking is not a recommended strategy for preventing PD. The well-documented risks – including cancer, cardiovascular disease, and lung damage – far outweigh any potential benefit. Instead, scientists are investigating whether specific compounds found in tobacco could be harnessed for new treatments without the harmful effects of smoking itself. What about my job? Can your job affect your risk of developing PD? Some studies suggest that certain occupations – like farming – might increase the risk, while others find no clear connection. So, what’s the truth? Let’s break it down. Some research suggests that farmers are more likely to develop PD, possibly due to exposure to pesticides like paraquat and rotenone, which have been linked to brain cell damage. Additionally, heavy metals found in agricultural environments – such as lead and manganese – may contribute to brain inflammation and oxidative stress, both of which play a role in PD. Furthermore, certain metals, including iron, mercury, copper, and manganese, can build up in the brain over time. Scientists believe that long-term exposure could damage the neurons that produce dopamine. However, the exact link isn’t fully understood, and not everyone exposed to these metals develops PD. That said, not all studies agree. Some large-scale research has found no significant link between farming, pesticide exposure, heavy metals and PD risk. This means that while environmental factors might play a role, other things – like genetics, lifestyle, or how long and intensely someone is exposed – could be just as important. So.. should you worry? If you work in farming or are regularly exposed to pesticides and heavy metals, it might be a good idea to take precautions, like using protective equipment and following safety guidelines. However, more research is needed to fully understand how these exposures contribute to PD. For now, staying informed and taking steps to reduce unnecessary exposure to harmful chemicals is a smart approach. What can you do? While there’s no guaranteed way to prevent PD, research suggests that certain lifestyle choices may help reduce the risk. Here are some science-backed steps you can take: 1. Adopt a Mediterranean-style diet: eating a diet rich in whole, plant-based foods, healthy fats (like olive oil and nuts), and lean proteins has been linked to a lower risk of PD. The Mediterranean diet is packed with antioxidants and anti-inflammatory compounds that may help protect brain cells. 2. Stay active: regular exercise isn’t just good for your muscles and heart – it may also help maintain gut health and protect neurons. Activities like walking, swimming, or strength training have been associated with a reduced risk of PD and other neurodegenerative diseases. 3. Limit pesticide exposure: for those in agricultural or industrial settings, protective measures, such as wearing gloves and masks and following safety guidelines, can help reduce exposure to potentially harmful chemicals linked to PD. 4. Monitor gut health: emerging research suggests that the gut microbiome may play a key role in PD. While scientists are still exploring microbiome-targeted therapies, maintaining good gut health by eating fibre-rich foods, fermented foods (like yogurt and kimchi), and staying hydrated may support overall well-being. Conclusion The connection between diet, gut health, lifestyle, and PD is an exciting area of research. While we don’t yet have all the answers, it’s clear that healthy habits – such as eating well, staying active, and minimising harmful exposures – can support both brain and overall health. As science continues to uncover new insights, making informed choices today can help protect your well-being in the long run! Written by Joecelyn Kirani Tan, Hanin Salem, Devikka Sivashanmuganathan & Barayturk Aydin Related articles: TDP43 and Parkinsonism / Diabetes drug to treat Parkinson's REFERENCES Berthouzoz E, Lazarevic V, Zekeridou A, Castro M, Debove I, Aybek S, Schrenzel J, Burkhard PR, Fleury V. Oral and intestinal dysbiosis in Parkinson's disease. Rev Neurol (Paris). 2023 Nov;179(9):937-946. doi: 10.1016/j.neurol.2022.12.010. Epub 2023 Mar 16. PMID: 36934020. Bisaglia M. Mediterranean Diet and Parkinson's Disease. Int J Mol Sci. 2022 Dec 20;24(1):42. doi: 10.3390/ijms24010042. PMID: 36613486; PMCID: PMC9820428. Firestone JA, Lundin JI, Powers KM, Smith-Weller T, Franklin GM, Swanson PD, Longstreth WT Jr, Checkoway H. Occupational factors and risk of Parkinson's disease: A population-based case-control study. Am J Ind Med. 2010 Mar;53(3):217-23. doi: 10.1002/ajim.20788. PMID: 20025075; PMCID: PMC3299410. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology. 1998 May;50(5):1346-50. doi: 10.1212/wnl.50.5.1346. PMID: 9595985. hms.harvard.edu . (2017). The Gut and the Brain. [online] Available at: https://hms.harvard.edu/news-events/publications-archive/brain/gut-brain . Hrncir, T. (2022). Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms, [online] 10(3), p.578. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC8954387/#:~:text=Dysbiosis%20can%20be%20caused%20by,food%20additives)%2C%20and%20hygiene .. Jackson A, Forsyth CB, Shaikh M, Voigt RM, Engen PA, Ramirez V, Keshavarzian A. Diet in Parkinson's Disease: Critical Role for the Microbiome. Front Neurol. 2019 Dec 10;10:1245. doi: 10.3389/fneur.2019.01245. PMID: 31920905; PMCID: PMC6915094. Johns Hopkins Medicine (2025). Can Environmental Toxins Cause Parkinson’s Disease? https://www.hopkinsmedicine.org/health/conditions-and-diseases/parkinsons-disease/can-environmental-toxins-cause-parkinson-disease Kwon, D. et al. (2024) ‘Diet and the gut microbiome in patients with parkinson’s disease’, npj Parkinson’s Disease , 10(1). doi:10.1038/s41531-024-00681-7. Physiopedia. (n.d.). Gut Brain Axis (GBA). [online] Available at: https://www.physio-pedia.com/Gut_Brain_Axis_(GBA) . Project Gallery










