Search Index
355 results found
- Pseudo-Angelman Syndrome | Scientia News
A rare neurological disease that is caused by a flaw in genetics Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Pseudo-Angelman Syndrome 12/09/25, 11:10 Last updated: Published: 07/09/24, 20:20 A rare neurological disease that is caused by a flaw in genetics This is article no. 8 in a series on Rare Diseases. Next article: Breaking down Tay-Sachs . Previous article: Apocrine carcinoma . An overview Name of the disease: Pseudo-Angelman Syndrome Other names the disease is known by: - 2q23.1 microdeletion syndrome - Del(2)(q23.1) - monosomy 2q23.1 Prevalence rate in the US: <1000 Average life expectancy: mid-50s – early 70s for severe to moderate intellectual disabilities Mortality rate: <10% in individuals with severe to moderate intellectual disabilities (this rate is more than double the general population) Pseudo-Angelman syndrome is a neurological disease, which is classified as Rare since it affects fewer than 1000 people in the US (as reported by the National Institute of Health). However, the information on this disease, like other rare diseases, is incomplete. This article aims to raise awareness of rare neurological diseases such as Pseudo-Angelman syndrome. Onset of symptoms: the symptoms of the disorder can appear early as a newborn and an infant Its symptoms include: - Seizures - Moderate-severe learning difficulties- mental retardation (MR)- and behaviour issues (the roles of the frontal and parietal lobes in the brain are planning and executing actions, as well as proprioception) - Speech and developmental delays (one of the functions the temporal lobe in the brain is responsible for is audio processing and speech) - Trouble sleeping - Repetitive movements of the fingers, wrists, etc. or motor stereotypy Hypotonia, slow weight gain, and shorter height may also be present in children affected by the disease. Symptoms help diagnose the diagnosis, but only genetic testing confirms it. The genetic mechanism of the disease Genetic cause of the disease: a microdeletion on 2q23.1 A chromosomal deletion occurs when a region of a chromosome is removed, resulting in the loss of genetic material within that specific segment. A microdeletion affects an even smaller part on the chromosome. Hence, in Pseudo-Angelman syndrome, the 2q23.1 microdeletion involves the loss of a small section of DNA on chromosome no. 2. More specifically, the DNA is lost from position 23.1 on chromosome 2. The exact role of chromosome 2 is not yet known (there is active research in this field), but chromosome 2 likely contains protein-coding genes. The chances are that key proteins that genes in chromosome 2 code for, are not made when there is a 2q23.1 microdeletion i.e. the microdeletion removes these crucial genes, and so cells cannot produce the proteins. Thus, giving rise to Pseudo-Angelman syndrome in the individual. Indeed, research has shown that usually the MBD5 gene is deleted in patients with the syndrome (in one study, all 15 patients had lost this gene from the removed region). The next prominent gene that is deleted is EPC2 , which is a gene that is thought to be involved in causing MR. Inheritance of the disease: mostly de novo A study by van Bon et. al (2009) depicted that 10 out of 11 patients were shown to have de novo inheritance of 2q23.1 microdeletion. Comparison to Angelman syndrome See Table 1 The syndrome is called Pseudo-Angelman, so where does the Angelman part of the name come from? (The disease is named after Dr. Harry Angelman, who had first described and reported the syndrome in 1965). Angelman syndrome (AS) is also a rare disease, however, it has a higher prevalence rate than Pseudo-Angelman. One possibility could be in the way these different conditions come about in the first place. Loss of function (rather than a deletion) of the UBE3A gene in chromosome 15 from the mother, gives rise to AS. It is an example of an imprinting disorder. (Two copies of each chromosome are normally inherited, but in genomic imprinting, only one copy of a particular chromosome is passed on i.e. either the copy from the mother is inherited, or from the father- not both. Deletion, loss of function etc. may cause the other copy to not be inherited. Imprinting disorders lead to developmental and growth problems in the affected individual). In contrast, Pseudo-Angelman syndrome is often de novo, and not inherited. It is not an imprinting disorder like Angelman’s, because Pseudo-Angelman is caused by a microdeletion in 2q23.1. However, AS presents severe physical, learning, and intellectual problems. The syndrome causes seizures and developmental delays. The similarity in patients with Pseudo-Angelman can be seen here; therefore, it may be why Pseudo-Angelman is named so. Table 1: a comparison of AS and Pseudo-Angelman syndrome Angelman syndrome (AS) Pseudo-Angelman Syndrome Prevalence rate 1 in 20,000- 12,000 <1000 in the US Symptoms in common severe physical, learning, and intellectual problems seizures and developmental delays severe physical, learning, and intellectual problems seizures and developmental delays Cause Loss of function of UBE3A gene Microdeletion (of MBD5 and ECP2 genes among others) Chromosome affected Chromosome 15 Chromosome 2 (2q23.1) Mode of inheritance Genomic imprinting; inherited in an autosomal dominant way in rare cases De novo Are there any treatments for Pseudo-Angelman syndrome? Cure available: none There is no one cure to help patients with the disease, but depending on symptoms, treatment may be offered accordingly. Current treatments based on symptoms: - Seizures--> anti-seizure medicines - Behaviour issues--> behaviour therapy - Speech and developmental delays--> speech therapy - Difficulty sleeping--> medicine, sleep training Potential future treatments or cures: targeted therapy in chromosome 2 Research is ongoing for a cure, and it is considering targeting particular genes of chromosome 2 in therapy- perhaps the MBD5 and ECP2 genes. The outlook for research into this disease Aside from discerning the exact roles and functions of the genes on chromosome 2, there is active research in targeted therapy for Pseudo-Angelman syndrome. Likely, once the rest of the roles of the genes on chromosome 2 are elucidated, efforts can be invested towards modifying or even inserting these genes (e.g. MBD5 and ECP2 ) back into the chromosome, which would lead to better protein expression. This could be a possible treatment for the rare neurological disease. Outside the molecular and genetic front, there should be increased awareness about this disease: this helps in reporting and diagnosing the syndrome, in addition to providing care and treatment to patients and their families. Summary In conclusion, Pseudo-Angelman Syndrome is a rare 2q23.1 microdeletion syndrome, which gets its name from the imprinting disorder AS. Pseudo-Angelman is characterised by seizures, moderate to severe learning difficulties, and developmental delays. Hence, making it a neurological disease as well. Treatments are available according to symptoms; but efforts are ongoing to ascertain the roles of other chromosome 2 genes, leading to potential targeted therapy. -- Patient organisations specifically for this disease: - Chromsome Disorder Outreach - Unique The information in this article does not substitute professional medical advice. For any concerns, please refer to your doctor or local genetic centre. -- Written by Manisha Halkhoree Related article: Childhood intelligence REFERENCES van Bon, B., Koolen, D., Brueton, L. et al. The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype. Eur J Hum Genet 18, 163–170 (2010). https://doi.org/10.1038/ejhg.2009.152 Mayo Clinic, 2024. Angelman syndrome . Retrieved from Mayo Clinic: https://www.mayoclinic.org/diseases-conditions/angelman syndrome/diagnosis-treatment/drc-20355627#:~:text=Depending%20on%20your%20child's%20symptoms,sign%20language%20and%20picture%20communication. Medline Plus, 2024. Angelman syndrome . Retrieved from Medline Plus Gov: https://medlineplus.gov/genetics/condition/angelman-syndrome/#:~:text=Angelman%20syndrome%20affects%20an%20estimated%201%20in%2012%2C000%20to%2020%2C000%20people . National Institute of Health, 2024. 2q23.1 microdeletion syndrome . Retrieved from National Institute of Health: https://rarediseases.info.nih.gov/diseases/10998/2q231-microdeletion-syndrome Project Gallery
- Vitamins | Scientia News
Role and function in the body Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Vitamins 14/07/25, 15:11 Last updated: Published: 07/10/23, 12:59 Role and function in the body Vitamins are organic compounds which are not snythesised by organisms. They play a vital role in optimal health to allow for normal cell function, growth and development. There are thirteen essential vitamins: ● Vitamin A - important for eyesight and also strengthens immune systems. ● Vitamin C - important for the health of the immune system and helps produce collagen and helps with wound healing. ● Vitamin D - important for bone health and maintaining immune system functionality. ● Vitamin E - is an antioxidant that helps prevent cell damage and has a preventative role in cancer. Makes red blood cells. ● Vitamin K - allows for blood to clot and plays a role in bone health. ● Vitamin B1 (thiamine) - used to keep muscle tissue and nerves healthy. ● Vitamin B2 (riboflavin) - important for body growth and red blood production. ● Vitamin B3 (niacin/ nicotinic acid) - important for digestion and the digestive system health. ● Vitamin B5 (pantothenic acid/ pantothenate)- important for producing red blood cells and maintaining a healthy digestive system. ● Vitamin B6 (pyridoxin) - helps make brain chemicals and for normal brain function. ● Vitamin B7 (biotin) - needed for metabolism. ● Vitamin B9 (folate/ folic acid) - important for brain function and mental health. ● Vitamin B12 (cobolamine) - important for the nervous system and helps in production of DNA and RNA. They are mostly obtained from the foods we eat but some vitamins like K and biotin are produced by microorganisms in the intestine commonly known as ‘gut flora’. Vitamins are needed in very small quantities. They are made up of carbon, oxygen and hydrogen. They can also contain nitrogen, sulfur, phosphorus and other elements. Vitamin deficiencies Deficiencies of vitamins are classified as either primary or secondary. A primary deficiency occurs when an organism does not get enough of the vitamins in its food such as metabolic causes. A secondary deficiency may be due to an underlying disorder e.g due to lifestyle choices like smoking, excess alcohol consumption or medication that interacts with vitamins. There can be times where one experiences deficiencies and thus it is important to acquire the necessary vitamins through foods, supplements or medication. Sources of vitamins There are many good food sources which provide your body with all the vitamins needed to work properly: ● Oily fish such as salmon, herring and mackerel ● Red meat ● Egg yolk ● Milk and yoghurt ● Cheese ● Nuts and seeds ● Plant-based oils such as olive and rapeseed ● Green leafy vegetables such as broccoli and spinach and a lot more…. This article does not provide any medical advice so please do seek advice from your doctor if you have any further queries. Further information can be found here . Written by Khushleen Kaur Related articles: Probiotics / Food at the molecular level / Rising food prices Project Gallery
- Artemis: the Lunar South Pole Base | Scientia News
Landing on the moon (again!) Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Artemis: the Lunar South Pole Base 09/07/25, 10:55 Last updated: Published: 13/01/24, 15:44 Landing on the moon (again!) Humans have not visited the moon since 1972, but that’s about to change. Thanks to NASA’s Artemis missions, we have already taken the first small step towards our own lunar home for astronauts. NASA has established the second generation of its lunar missions- “Artemis”, fittingly named after the ancient Greek Goddess of the Moon, and Apollo’s twin. The ultimate aim of the Artemis missions is to solidify a stepping stone to Mars. Technologies will be developed, tested, and perfected, before confidence is built to travel on to Mars. NASA has to consider the natural conditions of the Moon, since doing so will allow astronauts to limit their reliance on resources from Earth, and increase their length of stay and therefore potential for research. The amount achieved would be extremely limited if a lunar mission relied solely on resources from Earth, due to the limitation of rocket payloads. This is known as In-Situ Resource Utilisation, and in addition to extended lunar stays, its success on the Moon is essential if we hope to one day establish a base on Mars. As a priority, astronauts need to have access to energy and water. Luckily, the conditions at the lunar south pole may be ideal for this. Unlike Earth, where we experience seasons due to its 23.5° tilt, the Moon’s tilt is tiny, at only 1.5°. This means some areas at the lunar poles are almost always exposed to sunlight, providing a reliable source of solar energy generation for a potential Artemis Base Camp. And since the Sun is always near the horizon at the poles, there are even areas in deep craters that never see the light. These areas of “eternal darkness” can reach temperatures of -235°, possibly allowing astronauts access to water ice. Aside from access to resources, Artemis has to consider the dangers that come from living in space. Away from the safety of Earth’s protective atmosphere and magnetosphere, astronauts would be exposed to harsh solar winds and cosmic rays. To combat this, NASA hopes to make use of the terrain surrounding the base, highlighting another advantage of the hilly south pole [3]. The exact location for the Artemis Base is currently undecided. We just know it will most likely be near a crater rim by the south pole, and on the Earth-facing side to allow for communication to and from Earth. Not only is the south pole ideal from a practical standpoint, it is also an area of exciting scientific interest. Scientists will have access to the South Pole–Aitken basin, not only the oldest and largest confirmed impact crater on the Moon, but the second largest confirmed impact crater in the entire Solar System. With a depth of up to 8.2 km, and diameter of 2500 km, it is thought this huge crater will contain exposed areas of lower crust and mantle, providing an insight into the Moon’s history and formation. Additionally, thanks to areas of “eternal darkness” the ice water found deep within craters at the south pole may hold trapped volatiles up to 3.94 billion years old, which, although not as ancient as previously expected, can still provide an insight into the evolution of the Moon. The scientific potential of the Artemis Base Camp extends far beyond location specific investigations to our most fundamental understanding of physics, from Quantum Physics to General Relativity. Not to mention the astronauts themselves, as well as “model organisms” which will be the focus of physiological studies into the effects of extreme space environments. Artemis Timeline Overview Artemis 1 launched on 16th November 2022. It successfully tested the use of two key elements of the Artemis mission- Orion and the Space Launch System (SLS)- with an orbit around the moon. Orion, named after the Goddess Artemis' hunting partner, is the spacecraft that will carry the Artemis crew into lunar orbit. It is carried by the SLS, NASA’s super heavy-lift rocket, one of the most powerful rockets in the world. Artemis 2 plans to launch late 2024 and will be the first crewed Artemis mission, with a lunar flyby bringing four astronauts further than humans have ever travelled beyond Earth. Artemis 3 plans to launch the following year. It will be the historic moment that will see humans step foot on the surface of the moon for the first time since we left in 1972. The mission will be the first use of another key element of the Artemis missions- the Human Landing System (HLS). Astronauts will use a lunar version of SpaceX’s Starship rocket as the HLS for Artemis 3 and 4. (Starship is currently in its test stage, with its second test launch carried out very recently on the 18th November 2023.) Two astronauts will stay on the lunar surface for about a week, beating the current record of 75 hours on the Moon by Apollo 17. Artemis 4 plans to launch in 2028. The mission will include the first use of Gateway, another key element to the Artemis missions. Gateway will be a multifunctional lunar space station, designed to transfer astronauts between Orion and HLS, as well as hosting astronauts to live and research in lunar orbit. Gateway will be constructed over Artemis 4-6 , with each mission completing an additional module. NASA plans to have Artemis missions extending for years beyond this, with over 10 proposed and more expected. Eventually we will have a working base on the Moon with astronauts able to stay for months at a time. Having already started a year ago, Artemis will continue to expand our horizons. We can look forward to uncovering long held secrets of the Moon, and soon, setting our sights confidently on Mars. Written by Imo Bell Related articles: Exploring Mercury / Fuel for the colonisation of Mars / Nuclear fusion REFERENCES How could we live on the Moon? - Institute of Physics. Available at: https://www.iop.org/explore-physics/moon/how-could-we-live-on-the-moon Understanding Physical Sciences on the Moon - NASA. Available at: https://science.nasa.gov/lunar-science/focus-areas/understanding-physical-sciences-on-themoon NASA’s Artemis Base Camp on the moon will need light, water, elevation - NASA. Available at: https://www.nasa.gov/humans-in-space/nasas-artemis-base-camp-on-the-moon-will-need-ligh t-water-elevation Zuber, M.T. et al. (1994) ‘The shape and internal structure of the Moon from the Clementine Mission’, Science, 266(5192), pp. 1839–1843. doi:10.1126/science.266.5192.1839. Flahaut, J. et al. (2020) ‘Regions of interest (ROI) for future exploration missions to the Lunar South Pole’, Planetary and Space Science, 180, p. 104750. doi:10.1016/j.pss.2019.104750. Moriarty, D.P. et al. (2021) ‘The search for lunar mantle rocks exposed on the surface of the Moon’, Nature Communications, 12(1). doi:10.1038/s41467-021-24626-3. Estimates of water ice on the Moon get a ‘dramatic’ downgrade - Physics World. Available at: https://physicsworld.com/a/estimates-of-water-ice-on-the-moon-get-a-dramatic-downgrade Biological Systems in the lunar environment - NASA. Available at: https://science.nasa.gov/lunar-science/focus-areas/biological-systems-in-the-lunar-environme Https://www.nasa.gov/wp-content/uploads/static/artemis/NASA : Artemis - NASA. Available at: https://www.nasa.gov/specials/artemis Project Gallery
- The Genetics of Ageing and Longevity | Scientia News
A well-studied longevity gene is SIRT1 Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The Genetics of Ageing and Longevity 11/07/25, 09:57 Last updated: Published: 13/05/24, 15:20 A well-studied longevity gene is SIRT1 Ageing is a natural process inherent to all living organisms. Yet, its mechanisms remain somewhat enigmatic. While lifestyle factors undoubtedly influence longevity, recent advancements in genetic research have revealed the influence of our genomes on ageing. Through understanding these influences, we can unlock further knowledge on longevity, which can aid us in developing interventions to promote healthy ageing. This article delves into the world of ageing and longevity genetics and how we can use this understanding to our benefit. Longevity genes A number of longevity genes, such as APOE , FOXO3 , and CETP, have been identified. These genes influence various biological processes, including cellular repair, metabolism, and stress response mechanisms. A well-studied longevity gene is SIRT1 . Located on chromosome 10, SIRT1 encodes sirtuin 1, a histone deacetylase, transcription factor, and cofactor. Its roles include protecting cells against oxidative stress, regulating glucose and lipid metabolism, and promoting DNA repair and stability via deacetylation. Sirtuins are an evolutionarily conserved mediator of longevity in many organisms. One study looked at mice with knocked-out SIRT1 ; these mice had significantly lower lifespans when compared with WT mice1. The protective effects of SIRT1 are thought to be due to deacetylating p53, which promotes cell death2. SIRT1 also stimulates the cytoprotective and stress-resistance gene activator FoxO1A (see Figure 1 ), which upregulates catalase activity to prevent oxidative stress3. Genome-wide association studies (GWAS) have identified several genetic variants associated with ageing and age-related diseases. Such variants influence diverse aspects of ageing, such as cellular senescence, inflammation, and mitochondrial function. For example, certain polymorphisms in APOE are associated with an increased risk of age-related conditions like Alzheimer's and Parkinson’s disease4. These genes have a cumulative effect on the longevity of an organism. Epigenetics of ageing Epigenetic modifications, such as histone modifications and chromatin remodelling, regulate gene expression patterns without altering the DNA sequence. Studies have shown that epigenetic alterations accumulate with age and contribute to age-related changes in gene expression and cellular function. For example, DNA methylation is downregulated in human fibroblasts during ageing. Furthermore, ageing correlates with decreased nucleosome occupancy in human fibroblasts, thereby increasing the expression of genes unoccupied by nucleosomes. One specific marker of ageing in metazoans is H3K4me3, indicating the trimethylation of lysine 4 on histone 3; in fact, H3K4me3 demethylation extends lifespan. Similarly, H3K27me3 is also a marker of biological age. By using these markers as an epigenetic clock, we can predict biological age using molecular genetic techniques. As a rule of thumb, genome-wide hypomethylation and CpG island hypermethylation correlate with ageing, although this effect is tissue-specific5. Telomeres are regions of repetitive DNA at the terminal ends of linear chromosomes. Telomeres become shorter every time a cell divides (see Figure 2 ), and eventually, this can hinder their function of protecting the ends of chromosomes. As a result, cells have complex mechanisms in place to prevent telomere degradation. One of these is the enzyme telomerase, which maintains telomere length by adding G-rich DNA sequences. Another mechanism is the shelterin complex, which binds to ‘TTAGGG’ telomeric repeats to prevent degradation. Two major components of the shelterin complex are TRF1 and TRF2, which bind telomeric DNA. They are regulated by the chromatin remodelling enzyme BRM-SWI/SNF, which has been shown to be crucial in promoting genomic stability, preventing cell apoptosis, and maintaining telomeric integrity. BRM-SWI/SNF regulates TRF1/2, thereby, regulating the shelterin complex, by remodelling the TRF1/2 promoter region to convert it to euchromatin and increase transcription. BRM-SWI/SNF inactivating mutations have been shown to contribute to cancer and cellular ageing through telomere degradation6. Together, the mechanisms cells have in place to protect telomeres provide protection against cancer as well as cellular ageing. Future of anti-ageing drugs Anti-ageing drugs are big business in the biotechnology and cosmetics sector. For example, senolytics are compounds that decrease the number of senescent cells in an individual. Senescent cells are those that have permanently exited the cell cycle and now secrete pro-inflammatory molecules (see Figure 3); they are a major cause of cellular and organismal ageing. Senolytic drugs aim to provide anti-ageing benefits to an individual, whereby senescent cells are removed, therefore, decreasing inflammation. Currently, researchers are certain that removing senescent cells would have an anti-ageing effect, although senolytic drugs currently on the market are understudied, and so their side effects are unknown. Speculative drugs could include those that enhance telomerase or SIRT1 activity. Evidently, ageing is not purely determined by lifestyle and environmental factors alone but also by genetics. While longevity genes are hereditary, epigenetic modifications may be influenced by external factors. Therefore, we can attribute the complex interplay between various external factors and an individual’s genome to understanding the role of genetics in ageing. Perhaps we will see a new wave of anti-ageing treatments in the coming years, developed on the genetics of ageing. Written by Malintha Hewa Batage Related articles: An introduction to epigenetics / Schizophrenia, inflammation and ageing / Ageing and immunity REFERENCES Cilic, U et al., (2015) ‘A Remarkable Age-Related Increase in SIRT1 Protein Expression against Oxidative Stress in Elderly: SIRT1 Gene Variants and Longevity in Human’, PLoS One , 10(3). Alcendor, R et al., (2004) ‘Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes’, Circulation Research , 95(10):971-80. Alcendor, R et al., (2007) ‘Sirt1 regulates aging and resistance to oxidative stress in the heart’, Circulation Research , 100(10):1512-21. Yin, Y & Wang, Z, (2018) ‘ApoE and Neurodegenerative Diseases in Aging’, Advances in Experimental Medicine and Biology , 1086:77-92. Wang, K et al., (2022) ‘Epigenetic regulation of aging: implications for interventions of aging and diseases’, Signal Transduction and Targeted Therapy , 7(1):374. Images made using BioRender. Project Gallery
- Nikola Tesla, wireless electricity, and the failure of Wardenclyffe Tower | Scientia News
Tesla’s vision was to develop wireless power across the globe Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Nikola Tesla, wireless electricity, and the failure of Wardenclyffe Tower 10/07/25, 10:25 Last updated: Published: 04/09/24, 10:37 Tesla’s vision was to develop wireless power across the globe Nikola Tesla Nikola Tesla (1856-1943) was a Serbian-American engineer and one of the most brilliant inventors of his time. His discoveries on how to utilise alternating current laid the foundation for the industrial revolution and today makes up the majority of power distribution systems globally. Finding inspiration from his mother Duka Mandic, whom he called a first-class inventor and credited for passing on her gift of discovery*, he went on to make significant contributions to the development of X-ray technology, radio, and robotics, as well as inventing the brushless AC motor, the rotating magnetic field, neon lights, and remote control. However, despite his many revolutionary inventions and around 300 patents to his name, Tesla died poor and ultimately failed in his greatest pursuit: to develop a free system of clean, wireless, electric power. Wardenclyffe Tower, also known as the Tesla Tower, was the first step in Tesla’s ‘World Wireless System’, a system designed to wirelessly broadcast electrical power across the globe, based on 20th century knowledge of resonance, the earth’s conductivity, and the Tesla coil. The Tesla coil: working principle The Tesla coil, invented by Nikola Tesla in 1894, is an alternating current resonant transformer that produces a high voltage from a low current. The high voltage produces sparks of ‘lightning’ or electrical discharge which can power lightbulbs. This experiment was a key motivator for Tesla’s later works with Wardenclyffe, although today the main use of the Tesla coil is for filming, entertainment, and educational displays. In a typical transformer, the ratio of turns determines the output voltage. The resonant properties of the secondary coil in a Tesla coil allows the transformer to achieve much higher voltages. A high voltage power supply from the first transformer is applied to a small primary coil, creating a large magnetic field. Current flow through the primary coil charges up a capacitor until the voltage across it exceeds the breakdown voltage of the spark gap (air). The capacitor discharges through the secondary coil in the opposite direction. This reverse current flow induces a magnetic field around the primary coil in the opposite direction. The constant changing of field direction induces a current in the secondary coil and produces a voltage proportional to the winding ratio of the coils. The resulting high voltage produces arcs of electricity similar to lightning from the terminal (typically torus shaped to direct sparks outward and prevent interference). Despite the high voltage, these electric discharges only produce a very small current in people who interact with it because of the high impedance of the coil and are not dangerous unless a person has a pacemaker or other medical device that could be affected by the high voltages. The frequency of the current has little interaction with nerve cells. Wardenclyffe Tower Following the same principles as the small-scale Tesla coil, Tesla’s vision was to replicate this on a large scale to develop wireless power across the globe, so that information could be transmitted from one tower to another by resonance. His early design featured two towers placed next to each other, so that the gap between the two domes could act as a spark gap. After cost revisions, the tower was redesigned to feature the entire transmitter circuit in one tower (see Figure 2 ). Figure 3 shows Tesla’s plan for the World Wireless System. An oscillator tower stands at 187 feet with a large dome of conductive metals on top, and an iron root system 300 feet into the earth. When the tower and Tesla receivers are tuned to the same resonant frequency, Tesla theorised that energy could be efficiently transferred between them. After obtaining funding from financier J.P. Morgan, Wardenclyffe tower began construction in 1901 in Shoreham, New York. The 187-foot tower featured a large spherical terminal, which was intended to ionize the atmosphere and create a conductive path for the energy. Below ground, a network of metal rods and plates would transmit energy into the Earth, relying on the Earth’s conductivity to complete the circuit. The working of the tower fundamentally relied on two highly under-researched principles, which were: 1. Earth as a conductor : In 1899 before Tesla began work on Wardenclyffe, he studied the periodicity of lightning in Colorado Springs, USA, and discovered what he called earth resonance. He found that large electrical impulses travel longitudinally through the earth to the antipode and are reflected (i.e., ‘resonate’) creating terrestrial stationary waves. He planned to use the tower to send electrical energy through the ground, which would then be picked up by receivers located anywhere on the planet. 2. Air as a conductor: Although air is normally a good insulator, at high altitudes (the earth’s ionosphere) it becomes an excellent conductor of high frequencies and voltages. The tower was designed to generate extremely high-frequency alternating currents, however reaching the earth’s ionosphere would require an antenna of at least 15 miles tall. Tesla apparently discovered a way to bypass this but did not make his methods public. There was very little knowledge about these phenomena at the time and even today are still not fully validated. Why Wardenclyffe failed Tesla initially pitched the project to J.P. Morgan as a world system of wireless communication to send messages, reports, and secure military messages, and to broadcast news and music. Morgan invested around $150,000 which Tesla accepted and instead began working on wireless electricity transmission, despite the investment being far below a realistic sum for the cost of the project. As Wardenclyffe tower required frequent modifications to the tower’s design during construction as well as expensive materials, the project was very costly. At the same time, Guglielmo Marconi achieved his less ambitious and inexpensive aim of wirelessly communicating the letter ‘s’ in Morse code (using some of Tesla’s patents). Combined with the Panic of 1907 and realising Tesla’s primary aim was for electricity to be free worldwide, which would be difficult to monetise, J.P. Morgan withdrew financial support and Tesla was forced to abandon the project. The scientific community and further potential investors were also sceptical about the feasibility of wireless energy transmission particularly considering energy losses over long distances, which made it difficult to obtain further funding. At the same time as Wardenclyffe Tower was being developed, Tesla’s AC power distribution system was being implemented rapidly. The established infrastructure of wired electricity transmission made it even more difficult for Tesla's wireless system to gain traction and funding, and the tower was demolished in 1917 to satisfy Tesla’s debts. Conclusion Wardenclyffe tower was an ambitious and audacious project which ultimately was not financially feasible. Even with modern day technology, efficiency, safety, and economic considerations prevent the system being a practical reality. Nevertheless, Tesla was undeniably an ingenious inventor, and his futuristic and daring approach to engineering continues to inspire innovations as well as debate. Today the site of Wardenclyffe tower is home to the Tesla Science Centre, a memorial to Tesla’s life and work. Footnotes * A highly skilled and intelligent woman despite no formal education, she invented various household tools and devices like the loom and egg whisk. Written by Varuna Ganeshamoorthy Related articles: Transformers / Mobile networks / Electricity in the body REFERENCE Tesla, N., & Johnston, B. (1982). My inventions: the autobiography of Nikola Tesla. Project Gallery
- Zinc fingers in action | Scientia News
Unraveling the mysteries of protein-DNA interactions Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Zinc fingers in action 14/07/25, 15:21 Last updated: Published: 07/01/24, 14:22 Unraveling the mysteries of protein-DNA interactions Zinc-finger proteins are one of the most prevalent proteins used in DNA-binding motifs in biological processes. They are common as eukaryotic transcriptional factors. As they are structurally diverse, they interact in cellular processes like RNA packaging, DNA recognition, and transcriptional activation. Cys2His2 zinc- finger proteins are significant in cellular processes because of their short helical structure. The motif forms from a few amino acid sequences that contain cysteine and histidine residues that coordinate to a zinc ion. The zinc ions are crucial in stabilising the protein during folding. They also hold the α-helix and β-sheetstructures in place. The protein’s stability comes from the weak hydrophobic core and zinc coordination created by chelating. The zinc-finger/DNA complex is formed from the fingers interacting with up to four bases. The zinc finger DNA complex was first discovered from the transcription factor TFIIIA. The transcription factor had a ninefold pattern containing hydrophobic residues, histidine, and cysteine. The zinc finger motif was then concluded to consist of thirty amino acids and have a DNA binding domain with a zinc ion. This was confirmed by an extended x-ray absorption fine structure analysis. It was concluded that the contacts between the DNA strand and α helix occur due to hydrogen bonding and Van der Waals interactions. From these studies, the structures of zinc finger domains play vital roles in many processes other than DNA binding. Their tertiary structure allows the proteins to act as DNA-binding motifs. The alpha helix functions as the protein recognition component by inserting the protein into the main groove of DNA. Immobilizing zinc-finger proteins on a polymer chip can be used as an example to identify infections in the human body. This section provides a summary of the many kinds of DNA recognition and the generic protein-folding principles. Firstly, a specific binding site probe is needed to identify the DNA sequence region. This allows the identification of specific base pairs in the sequence. The hydrogen bonds between the amino acids in the zinc-finger proteins and DNA bases allow the zinc- finger proteins to bind to non-specific backbone phosphates. The non-specific backbone phosphates are formed from the interactions in the major and minor grooves of the DNA. The zinc-finger DNA interactions contribute substantially to hydrogen bonding and overall binding energy. To conclude, zinc fingers are very common structural motifs that are used as model systems to investigate how these proteins can recognise DNA sequences. This research has been involved in developing important therapeutic tools. Their unique structure allows them to be heavily involved in DNA binding, most commonly the Cys2His2 fingers. These binding interactions can be further explored to understand how certain target genes are bound to or how inhibitors can show the pharmacological properties of the zinc finger proteins. Written by Anam Ahmed Related articles: p53 protein / Anti-freeze proteins Project Gallery
- Motivating the Mind | Scientia News
MIT scientists found reward sensitivity varies by socioeconomic status Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Motivating the Mind 08/02/25, 13:24 Last updated: Published: 22/04/24, 10:41 MIT scientists found reward sensitivity varies by socioeconomic status Behaviour is believed by many, including the famous psychologist B.F. Skinner, to be reinforced by rewards and the degree to which an individual is motivated by rewards is called reward sensitivity. Another common view is that behaviour is influenced by the environment, nowadays including socioeconomic status (SES). People with low SES encounter fewer rewards in their environment, which could affect their behaviour toward pursuing rewards due to their scarcity- Farah 2017. Thus, a study by Decker (2024) investigates the effect of low SES on reward sensitivity in adolescents through a gambling task, using fMRI technology to measure response times, choices and activity in the striatum – the reward centre of the brain. The researchers hypothesised that response times to immediate rewards, average reward rates and striatal activity would differ for participants from high compared to low SES backgrounds. See Figure 1 . The study involved 114 adolescents whose SES was measured using parental education and income. The participants partook in a gambling task involving guessing if numbers were higher or lower than 5, the outcomes of which were pre-determined to create blocks with reward abundance and reward scarcity. Low and high SES background teenagers gave faster responses and switched guesses when the rewards were given more often. Also, immediate rewards made the participants repeat prior choices and slowed response times. In line with the hypothesis, fewer adolescents with lower SES slowed down after rare rewards. Moreover, it was found that lower SES is linked with fewer differences between reward and loss activation in the striatum, indicating experience-based plasticity in the brain. See Figure 2 . Therefore, the research by Decker (2024) has numerous implications for the real world. As adolescents with lower SES displayed reduced behavioural and neural responses to rewards and, according to behaviourism, rewards are essential to learning, attention and motivation, it can be assumed that SES plays a role in the inequality in many cognitive abilities. This critically impacts the understanding of socioeconomic differences in academic achievement, decision-making and emotional well-being, especially if we consider that differences in SES contribute to prejudice based on ingroups and outgroups. Interventions to enhance motivation and engagement with rewarding activities could help buffer against the detrimental impacts of low SES environments on cognitive and mental health outcomes. Overall, this research highlights the need to address systemic inequities that limit exposure to enriching experiences and opportunities during formative developmental periods. Written by Aleksandra Lib Related article: A perspective on well-being REFERENCES Decker, A. L., Meisler, S. L., Hubbard, N. A., Bauer, C. C., Leonard, J., Grotzinger, H., Giebler M. A., Torres Y C., Imhof A., Romeo R. & Gabrieli, J. D. (2024). Striatal and Behavioral Responses to Reward Vary by Socioeconomic Status in Adolescents. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 44(11). Farah, M. J. (2017). The neuroscience of socioeconomic status: Correlates, causes, and consequences. Neuron, 96(1), 56-71. Project Gallery
- Potential vaccine for malaria | Scientia News
Malaria is a vicious parasitic disease spread through the bite of the female Anopheles mosquito, with young children being its most prevalent victim. In 2021, there were over 600,000 reported deaths, giving us an insight into its Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Could this new vaccine spell the end of malaria? Last updated: 20/01/25 Published: 01/02/23 Malaria is a vicious parasitic disease spread through the bite of the female Anopheles mosquito, with young children being its most prevalent victim. In 2021, there were over 600,000 reported deaths, giving us an insight into its alarming virulence. The obstacle in lessening malaria's disease burden is the challenge of creating a potent vaccine. The parasite utilises a tactic known as antigenic variation, where its extensive genetic diversity of antigens allows it to modulate its surface coat, allowing it to effectively evade the host immune system. However, unlike other variable malaria surface proteins, RH5, the protein required to invade red blood cells (RBC), does not vary and is therefore a promising target. Researchers at the University of Oxford have demonstrated various human antibodies that block the interaction between the RH5 malaria protein to host RBCs, providing hope for a new way to combat this deadly disease. The researchers have reported up to an 80% vaccine efficacy, surpassing the WHO's goal of developing a malaria vaccine with 75% efficacy. Therefore, this vaccine has the potential to be the world’s first highly effective malaria vaccine, and with adequate support in releasing this vaccine, we could be well on our way to seeing a world without child deaths from malaria. Written by Bisma Butt Related articles: Rare zoonotic diseases / mRNA vaccines
- The physics of the world’s largest gravitational-wave observatory: LIGO | Scientia News
Laser Interferometric Gravitational-wave Observatory (LIGO) Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The physics of the world’s largest gravitational-wave observatory: LIGO 23/10/25, 10:23 Last updated: Published: 11/05/24, 11:16 Laser Interferometric Gravitational-wave Observatory (LIGO) Since the confirmation of detection, talk of gravitational waves has drastically increased in the public forum. In February 2016, the Laser Interferometric Gravitational-wave Observatory (LIGO) Collaboration announced that they had sensed gravitational waves, or ripples in spacetime, caused by the collision of two black holes approximately 1.3 billion light years away. Such an amazing feat quickly became globalized news with many asking how it could be physically possible to detect an event occurring at an unimaginable distance? For some, the entire situation feels incomprehensible. Although named an observatory, LIGO looks quite different from observatories such as the late Arecibo Observatory in Puerto Rico, the Very Large Array (VLA) in New Mexico, or the Lowell Observatory in Arizona. Instead of being related to the traditional telescope concept, LIGO is comprised of two interferometers, one in Hanford, Washington and the other in Livingston, Louisiana, that use lasers to detect vibrations in the fabric of spacetime. An interferometer is an L-shaped apparatus with mirrors at the end of each arm specifically positioned to split the incoming light waves, specifically in this case laser waves, into an interference pattern. This pattern is then detected by a device called a photodetector, which converts the pattern into carefully recorded data. When an incredibly violent event occurs, two black holes colliding, for instance, that action results in a massive release of energy that ripples across the fabric of spacetime. The energy from the event vibrates the laser light causing a change in the recorded light pattern. This change is also recorded by the photodetector and stored as data, which scientists can collect to analyze as needed. Because the LIGO detector is so sensitive, there are a number of systems in place to maintain its functionality and reliability. The apparatus is comprised of four main systems: 1) seismic isolation that focuses on removing non-gravitational-wave detections (also called ‘noise’) 2) optics that regulate the laser 3) a vacuum system preserving the continuity of the laser by removing dust from the components 4) computing infrastructure that manages the collected scientific data. The collaboration of these systems helps to minimize the number of false detections. False detections are also kept at a minimum with the effective communication between the Washington and Louisiana LIGO sites. It took months for the official announcement of the 2015 gravitational-wave detection because both locations had to compare data to ensure that the detection of one apparatus was also accurately detected by the other apparatus. Because of human activity on Earth, there can be a number of vibrations similar to gravitational-wave ripples, but ultimately are shown to be terrestrial events rather than celestial ones. So, while LIGO physics itself is fairly straightforward, the interpretation of the gathered data tends to be tricky. Written by Amber Elinsky Related articles: the DESI instrument / the JWST / The physics behind cumulus clouds / Light Project Gallery
- Power of sisterhood in STEM | Scientia News
Broadening access for (black) women in STEM Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Power of sisterhood in STEM Last updated: 28/03/25, 11:10 Published: 28/03/25, 08:00 Broadening access for (black) women in STEM In collaboration with SiSTEM for International Women's Month Entering a fluid dynamics lecture. Looking under a microscope confined to the four walls of a lab. Walking onto a construction site or a board meeting. As a woman in these spaces, particularly as a woman of colour it is easy to believe you are the ONLY one. That’s what we thought, two sisters of black heritage starting out in the biomedical and the engineering field respectively. The higher we went in education the less people that looked like us. Being 1 of 10 women in a cohort of 200 was a familiar sight. Being less than 2% of the engineering workforce as a woman, you can start to feel like science, technology, engineering and maths (STEM) is not for you. But the reality is there are women in STEM doing incredible work. STEM is not a man’s industry. As women, we deserve our space on the STEM table. Through our struggles and isolating experiences, we decided to create SiSTEM, a community for all these wonderful women. Real life sisterhood We are often asked how we find working with your sister. Truth is, we wouldn’t be each other’s first choice for a business partner! We never thought we would start an organisation together, growing up as most siblings we have always wanted to do our own thing. Science and engineering was always seen as us doing separate things. Moreover we have completely different personalities. But we are two sisters with one dream; we don’t want another girl to leave the STEM field because she doesn’t believe she belongs there. We don’t want another girl to disqualify herself from her STEM career or degree because she has been told she doesn’t have the look for STEM or grades to do well. We have one passion and that’s to change the narrative of women in STEM, particularly black women and those from lower socioeconomic backgrounds. There is power in numbers Community and having a support system are important. We wouldn’t have completed our STEM degrees or broken into our careers without our personal sisterly support. We were always a phone call away for each other, ready to be a listening ear and a cheerleader. That same sisterly support is what we offer to other women and girls through our initiative. There’s power in sisterhood, standing on the shoulders of great women. Women face unique challenges particularly in the STEM industry, discrimination, feeling less valued, difficulty with pay and promotion but by building a culture of support we empower women to thrive despite the barriers. It’s beautiful to belong to a circle of women as we are stronger together. By belonging to a community it cultivates a feeling of belonging. You also learn from one another, sparking interesting conversations, building important connections. We learn from our community everyday: the conversations we are able to have inspire us and broaden our knowledge. Throwing the rope to the next generation From its inception, SiSTEM’s goal was to support women and girls throughout their STEM journey. The gender gap issue in STEM starts very early on, very often not when we choose our degree courses but as early as primary school. That’s why we empower young girls as young as five years old. Every girl, every woman deserves to be part of a community. Every stage of the journey has its unique challenges which belonging to community can help navigate. I’m sure you’ve heard the saying ‘empowered women empower women’ - now we feel empowered to empower other girls and women. We originally felt like we were not the people to create this community. Imposter syndrome told us we weren’t qualified enough, that we didn’t have a story to tell worth listening to. Reflecting on our own journeys, it’s women like our teachers, our mother, our friends who have been key in our success. Our mum telling us to ‘aim high and be the best’, a female science teacher telling us ‘you can be whatever you want to be’, a friend's comment on our graduation post saying how proud they are. And now a community of women who we can lean on for support, receive advice and inspire us every day. Today, we meet women at schools, events, universities and workplaces. A common theme in some of these women and girls we meet is a lack of confidence. Our biggest joy is when we are able to put a smile on a young girl’s face who feels giving up.Women need reminding how amazing they are so we continue to do amazing things, find a cure for cancer, make an innovative product to solve the world’s biggest problems or to design a beautiful building which would will be seen by generations to come. We shouldn’t be afraid to share our personal stories of how we got to where we are. when others hear they are empowered. This is what we use our platform to do. We are able to pass on the mic to other woman to share their untold stories. By putting a light on various women particularly black women in STEM we are giving others positive roles models to look to where they able to believe they do can do it. An empowered woman is a force of nature. She shines. She encourages. She breaks barriers and has the confidence to speak up in a place where she was told to be silent. By forming our community even though we may still find that we are the only women in the room, we have many women standing behind us and many more coming. Conclusion Retention of women in STEM is as equally as important as getting women into STEM. There is a leaky pipeline particularly between university level and STEM leadership positions and also many young girls already have a negative perception about certain STEM careers. That’s why we created an initiative to encourage more girls to get into STEM through innovative workshops and outreach programs and to create a community for women currently in the field. By doing so we aim to open the bottle top at one end and close any holes at the other end. Women supporting women in a powerful thing and there is space for all women in stem, no matter your background, academic records or skin colour. Together we make STEM colourful…preferably pink! -- Scientia News wholeheartedly thanks SiSTEM for this important piece on female representation in STEM. We hope you enjoyed reading this International Women's Month Special piece! For more information, check them out on Instagram and LinkedIn . -- Related articles: Representation in STEM / Women leading in biomedical engineering / African-American women in cancer research Project Gallery










