Search Index
342 results found
- A-level resources | Scientia News
Resources specific to A-levels to help students with revision. A-levels Are you a student currently studying A-levels, or looking to choose them in the near future? Read below for tips and guidance! You may also like: Personal statements , IB resources , University prep and Extra resources What are A-levels? Jump to resources A-levels, short for Advanced Level qualifications, are a widely recognised and highly regarded educational program typically taken by students in the United Kingdom (UK) and some other countries. They are usually studied in the final two years of secondary education, typically between the ages of 16 and 18. A-levels offer students the opportunity to specialise in specific subjects of their choice. Students typically choose three or four subjects to study, although this may vary depending on the educational institution. The subjects available can be diverse, covering areas such as sciences, humanities, social sciences, languages, and arts. How are A-levels graded? The A-level grading system is based on a letter grade scale in the UK. Here's an overview of the A-level grading system: Grades: A* (pronounced "A-star"): The highest grade achievable, demonstrating exceptional performance. A: Excellent performance, indicating a strong understanding of the subject. B: Very good performance, showing a solid grasp of the subject. C: Good performance, representing a satisfactory level of understanding. D: Fair performance, indicating a basic understanding of the subject. E: Marginal performance, showing a limited understanding of the subject. U: Ungraded, indicating that the student did not meet the minimum requirements to receive a grade. What are the benefits of studying A-level? A-levels provide students with a variety of advantages, such as a solid academic foundation for further education, the chance to focus on interest-specific areas, and flexibility in planning their course of study. Transferable abilities like critical thinking, problem-solving, and independent research are developed in A-levels, improving both prospects for entrance to universities and future employment opportunities. These widely respected credentials encourage intellectual vigour, intellectual curiosity, and a love of lifelong study. A-levels provide students with a strong foundation for success in higher education and a variety of career pathways, thanks to their academic rigour and global renown. Resources for revision Web sites to hel p Maths / Maths and Further Maths Chemistry / Chemrevise / Chemguide Biology / Quizzes Physics: A-level Physics / Isaac Physics Computer Science topic-by-topic Teach Computer Science Psychology All subjects / Seneca Learning / Save My Exams Physics and Maths Tutor YouTube channels to hel p Chemistry- Allery Chemistry and Eliot Rintoul Past p apers Biology, Chemistry, Physics, Maths Textbooks (depend on exam board) CGP range for Bio, Chem, Phys, and Maths- exam practice workbooks
- Environmental factors and exercise | Scientia News
An individual may be restricted to a certain range of physical activities which they can participate in. Individuals are usually reliant on the surrounding environment and the maintenance of facilities. If they are not kept well maintained, individuals are usually discouraged. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Influence of different environmental factors on exercise Last updated: 30/01/25 Published: 10/02/23 The characteristics of environmental factors: - Chemical safety - Air pollution - Climate change and natural disasters - Diseases caused by microbes - Lack of access to health care - Infrastructure issues - Poor water quality - Global environmental issues What are the impacts of these environmental influences on physical activity? An individual may be restricted to a certain range of physical activities which they can participate in. Individuals are usually reliant on the surrounding environment and the maintenance of facilities. If they are not kept well maintained, individuals are usually discouraged. The physiological effect on training: Climate change will disproportionately affect the most vulnerable in our populations, including the very young, the very old, and those with pre-existing health conditions. Training adjustments to compensate for the influence of environmental factors on training: - Treatments for heat stress- stop exercising / move to a shaded or air-conditioned area / remove excess clothing or equipment / drink cold beverages / sit in front of a fan / put a cool piece of cloth around neck / place entire body in cool water e.g. cool bath or shower - Treatments for cold stress- move to a warm environment / remove cold and wet clothes / find access to warm air such as heaters, or fireplace / use electric or non-electric blankets / drink warm beverages Written by Kushwant Nathoo Related articles: Impacts of negligent exercise on physiology / Physical and mental health / Environmental impact of EVs
- Technology | Scientia News
Explore artificial intelligence, a technology that has taken the world by storm. Learn how it is used in fields like agriculture, drug discovery, and outer space. Elsewhere, get to grips with semi-conductor manufacturing, quantum computing, and biotechnology. Technology Articles Explore artificial intelligence, a technology that has taken the world by storm. Learn how it is used in fields like agriculture, drug discovery, and outer space. Elsewhere, get to grips with semi-conductor manufacturing, quantum computing, and biotechnology. You may also like: Maths , Physics , Engineering Fake science websites Ways fake science websites misinform and misguide readers The evolution of artificial intelligence And its greater role in natural language processor technologies Medical biotechnology Technology in the medical sciences Quantum computing What are its applications? Improving agriculture Revolutionising sustainable agriculture through AI AI in drug discovery Using this technology in drug research Digital disinformation With the use of IT cells Digital innovation in rural farming What are the benefits? AI in space What is artificial intelligence used for in outer space? Radiation therapy to treat cancer Revolutionising patient setup in cancer treatment AI: the good, the bad, and the future A Scientia News Biology group collaboration Photonic integration In semiconductor manufacturing Nanomedicine Tiny solutions for big health problems NHS clinical computer scientist Exploring the day-to-day routine in this new field in healthcare Semi-conductor laser technology The recent advancements Code to cure How bioinformatics and technology helped to develop a vaccine for COVID-19 Virtual reality in healthcare Its potential Mauritius's rise as African leader of mobile networks An in-depth look at the rollout of 5G on the island, and the factors enabling this
- Zoology | Scientia News
Conservation, diseases, animal behaviour, adaptation and survival. Expand your knowledge on the incredible diversity of life on Earth with these articles. Zoology Articles Conservation, diseases, animal behaviour, adaptation and survival. Expand your knowledge on the incredible diversity of life on Earth with these articles. You may also like: Biology , and Ecology Deception by African birds The species Dicrurus adsimilis uses deception by flexible alarm mimicry to target and carry out food-theft attempts An experiment on ochre stars Investigating the relative fitness of the species Pisaster ocharceus Orcinus orca A species report Rare zoonotic diseases We all know about COVID-19. But what about the other zoonotic diseases? Article #1 in a series on Rare diseases. Marine iguanas Their conservation The cost of coats 55 years of vicuna conservation in South America. Article #1 in a series on animal conservation around the world. Conserving the California condor These birds live on the west coast of North America. Article #2 in a series on animal conservation around the world. Emperor penguins Kings of ice. Article #6 in a series on animal conservation around the world. Protecting rock-wallabies in Australia A group of 25 animal species, and subspecies related to kangaroos. Article #7 in a series on animal conservation around the world. Do other animals get periods? Looking at menstruation in non-human animals e.g. monkeys, bats Same-sex attraction in non-human animals SSSB in birds, mammals, and invertebrates Changing sex in fish Why some fish change sex during their lifetimes
- Maths | Scientia News
Brush up on your mathematical knowledge with informative articles ranging from statistics and topology, to latent space transformations and Markov chain models. Maths Articles Brush up on your mathematical knowledge with informative articles ranging from statistics and topology, to latent space transformations and Markov chain models. You may also like: Economics , Physics , Engineering and Technology Unlocking the power of statistics What statistics are and its importance Latent spac e transformations Their hidden power in machine learning Topology In action Teaching maths How we can apply maths in our lives How to excel in maths A useful resource for students studying the subject Cognitive decision-making The maths involved Cross-curricular maths The game of life The maths behind trading A comprehensive guide to the Relative Strength Index (RSI) Markov chain models Named after the Russian mathematician, Andrei Markov, who had first studied them Proving causation Investigating why correlation doesn't necessarily mean causation, via Randomised Controlled Trials and Instrumental Variables
- University prep | Scientia News
Resources to help you prepare for university admission. Entrance Exam Preparation Resources to help you with university admission for: medicine , dentistry, natural sciences , physics , maths , engineering . Do note these entrance exams are mainly for UK universities, but can be used for international unis too. It is advised to check with the university when applying. You may also like: Personal statements , A-level resources, IB resources and Extra resources MEDICINE: University Clinical Aptitude Test (UCAT) UCAT resources: UCAT website / The Medic Portal / 6med UCAT Books: 1300 UCAT Practice Questions / 1250 UKCAT Practice Questions / UCAT 700+ UCAT online course: Medify Help with medical exams DENTISTRY: UCAT and BioMedical Admissions Test (BMAT; for University of Leeds only) Dentistry application preparation BMAT: online mastery course / Medify guide / Past papers / 700 BMAT Practice Questions / BMAT ebook For UCAT resources, see above OTHER ADMISSION TESTS Engineering: STEP / PAT University of Cambridge: natural sciences (NSAA) / engineering (ENGAA) / maths (STEP) / physics (PAT)
- The physics of the world’s largest gravitational-wave observatory: LIGO | Scientia News
Laser Interferometric Gravitational-wave Observatory (LIGO) Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The physics of the world’s largest gravitational-wave observatory: LIGO 23/10/25, 10:23 Last updated: Published: 11/05/24, 11:16 Laser Interferometric Gravitational-wave Observatory (LIGO) Since the confirmation of detection, talk of gravitational waves has drastically increased in the public forum. In February 2016, the Laser Interferometric Gravitational-wave Observatory (LIGO) Collaboration announced that they had sensed gravitational waves, or ripples in spacetime, caused by the collision of two black holes approximately 1.3 billion light years away. Such an amazing feat quickly became globalized news with many asking how it could be physically possible to detect an event occurring at an unimaginable distance? For some, the entire situation feels incomprehensible. Although named an observatory, LIGO looks quite different from observatories such as the late Arecibo Observatory in Puerto Rico, the Very Large Array (VLA) in New Mexico, or the Lowell Observatory in Arizona. Instead of being related to the traditional telescope concept, LIGO is comprised of two interferometers, one in Hanford, Washington and the other in Livingston, Louisiana, that use lasers to detect vibrations in the fabric of spacetime. An interferometer is an L-shaped apparatus with mirrors at the end of each arm specifically positioned to split the incoming light waves, specifically in this case laser waves, into an interference pattern. This pattern is then detected by a device called a photodetector, which converts the pattern into carefully recorded data. When an incredibly violent event occurs, two black holes colliding, for instance, that action results in a massive release of energy that ripples across the fabric of spacetime. The energy from the event vibrates the laser light causing a change in the recorded light pattern. This change is also recorded by the photodetector and stored as data, which scientists can collect to analyze as needed. Because the LIGO detector is so sensitive, there are a number of systems in place to maintain its functionality and reliability. The apparatus is comprised of four main systems: 1) seismic isolation that focuses on removing non-gravitational-wave detections (also called ‘noise’) 2) optics that regulate the laser 3) a vacuum system preserving the continuity of the laser by removing dust from the components 4) computing infrastructure that manages the collected scientific data. The collaboration of these systems helps to minimize the number of false detections. False detections are also kept at a minimum with the effective communication between the Washington and Louisiana LIGO sites. It took months for the official announcement of the 2015 gravitational-wave detection because both locations had to compare data to ensure that the detection of one apparatus was also accurately detected by the other apparatus. Because of human activity on Earth, there can be a number of vibrations similar to gravitational-wave ripples, but ultimately are shown to be terrestrial events rather than celestial ones. So, while LIGO physics itself is fairly straightforward, the interpretation of the gathered data tends to be tricky. Written by Amber Elinsky Related articles: the DESI instrument / the JWST / The physics behind cumulus clouds / Light Project Gallery
- Biology Articles | Scientia News
Dive into the latest biological research! Read about animal testing and ethics, and learn about the regulation and policy of stem cell research. Biology Articles Dive into the latest biological research! Read about animal testing and ethics, and learn about the regulation and policy of stem cell research. You may also like: Cancer , Ecology , Genetics , Immunology , Neuroscience , Zoology , and Medicine Regulation and policy of stem cell research The 14-day rule and stem cell-based embryo models COMING SOON COMING SOON COMING SOON Previous
- A new model: miniature organs in biomedicine | Scientia News
How they're used in treatments Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link A new model: miniature organs in biomedicine 23/10/25, 10:21 Last updated: Published: 16/10/23, 21:39 How they're used in treatments Introduction Within biomedicine, the study of diseases and understanding their mechanisms are crucial to the treatments we can develop for them. Before a treatment option can be rolled out to the general public, it must be tested for safety and efficacy. Usually, this testing takes place in the form of cell cultures or animal models. However, these methods cannot always accurately replicate the human body's complexity and physiological responses and are sometimes quite expensive and difficult to maintain. In the past few years, a new model has come to light known as organoids, allowing for a new realm of understanding into drug development, disease, and human biology. What Are Organoids? Organoids are self-organised, small, three-dimensional organ models which allow scientists and researchers to study different biological organs and tissues in a lab setting, including their physiological functions, development, and structure. These miniature organs are remarkable in their resemblance to actual organs and are obtained from stem cells, and they can undergo division to become any cell type. From their theoretical abilities, organoids may be able to serve utmost value in biomedicine and how we think about testing new treatments. Disease Modelling, Drug Development and Personalised Medicine One of the ways in which organoids can be used is to model diseases and test for potential drug targets and treatment programmes. In this way, researchers can replicate congenital and acquired conditions, such as cystic fibrosis and cancer, to study key target phenotypes and understand disease progression, which can help identify potential drug targets. From here, the efficacy of these therapeutics can be assessed quite quickly under different circumstances. As an example of this being used currently, scientists involved in cancer research have produced organoids from tumour cells stemming from cancer patients. These patient-derived organoids have been made for various cancers, including endometrium. They will allow for the ability to test chemotherapy drugs and determine which are most effective for individual patients whilst factoring in comorbidities and other unique factors to that person. Through this personalised approach, it is hoped that therapeutics will allow for a customised treatment programme which lowers the risk of side effects and improves the quality of care. Understanding Development and Function Another use of organoids is going into more depth and exploring our understanding of how an organ may develop and function. Using organoids can help us observe how different cells may work together and interact to organise themselves, allowing researchers to strengthen their knowledge of organogenesis by mimicking the natural growth conditions of the human environment. By combining tissue engineering with an appreciation of an organ's functional and developmental processes, organoid use can be extended to regenerative medicine to help fill research gaps in the molecular and cellular mechanisms of tissue regeneration. Techniques such as ELISA and immunofluorescent staining can help garner these critical details. By achieving this, organoids may produce entire organs for transplantation, addressing the organ donor shortage and lowering the risk of donor rejection. Recent Breakthroughs Cardiovascular diseases are one of the leading causes of death around the world. The human heart is limited to regenerating damaged tissue; thus, research must explore using organoids and other cell-based therapies to encourage natural repair processes. By investigating this avenue, cardiomyocytes derived from human pluripotent stem cells are a promising source. These cell types have the potential to restore contractile functions in animal models as well as the ability to regenerate myocardial tissue. Researchers have developed a cardiac organoid with silicon nanowires that have significantly improved the medicinal efficacy of stem cell-derived cardiac organoids. Using these nano-wired organoids, electrical activity was shown to improve, which in turn supported improved contractility in ischemia-injured mice. Challenges and Future Directions While the promising nature of organoids must be acknowledged, they are not without limitations. Research is currently ongoing to improve the reproducibility and scalability of organoids and their cultures to make organoids more accessible and their use more widespread. Below are some summarised advantages and disadvantages of organoids. Conclusion In conclusion, the advent of organoids has created a revolutionary era within the scope of biomedicine. These miniature organs have remarkable potential in various research, development, and tissue engineering facets. Organoids provide scientists with precise modelling of diseases across a range of different organs, assuring their versatility. From understanding organ development to combating cardiovascular diseases and introducing personalised treatment for cancer patients, it is unclear why they are being more rapidly explored. While they hold their promise, there are still challenges surrounding their reproducibility, restricting them from being used in organ transplantation. However, with ongoing progress, organoids undoubtedly have the aptitude to tailor treatments and address complexities of tissue regeneration, heralding a groundbreaking era in healthcare. Written by Irha Khalid Related article: iPSCs and organoids / Animal testing ethics Project Gallery
- Dark Energy Spectroscopic Instrument (DESI) | Scientia News
A glimpse into the early universe Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Dark Energy Spectroscopic Instrument (DESI) 23/10/25, 10:22 Last updated: Published: 08/07/23, 13:11 A glimpse into the early universe June 2023 marked the early release of data from the Dark Energy Spectroscopic Instrument (DESI). This instrument will study the nature of Dark Energy, an elusive addition to our cosmological equations that is thought to explain the accelerating expansion of the Universe. Current models estimate that Dark Energy comprises 68% of the total mass and energy of the universe and is distinct from matter and radiation in the sense that as space expands, its energy density remains constant rather than diluting. Imagine your favourite concentrated juice drink tasting the same regardless of how much water you add! DESI will investigate the large-scale structure of the Universe, obtaining spectra of around 40 million galaxies and using their redshift to create 3-D distance maps. The five-year observation effort has aptly been dubbed an experiment in “cosmic cartography”. (Redshift is the phenomenon wherein the light from objects moving away from us is stretched to longer and redder wavelengths.) The revolutionary engineering behind this instrument enables the measurement of light from more than 100,000 galaxies in a single night! This includes 5,000 optical fibres, each connected to a robotic positioner programmed to aim at galaxies from a specified target list. The survey is conducted on the 4-metre Mayall Telescope at the Kitt Peak National Observatory in Arizona. Another staggering feature DESI boasts is that the eventual sample size will outstrip the 20-year Sloan Digital Sky Survey by a factor of 10 in extra-galactic targets! The early release contains 80 Terabytes of data, representing 2% of the total dataset that should be available in 2026. See Figures 1 and 2. In 2005, the Sloan Digital Sky Survey found a signal that DESI will validate and make more precise. This signal is that of Baryonic Acoustic Oscillations (BAO). In the incredibly early universe, there were protons and neutrons, known as baryons, which existed in a hot, dense plasma with electrons. Photons were trapped in this plasma due to the extremely high probability of colliding with an electron. The universe was opaque. Only when the universe had cooled sufficiently so that protons and electrons could form neutral hydrogen atoms—an epoch known as recombination*—*did photons decouple from matter. The Cosmic Microwave Background is actually caused by these photons that were emitted after recombination. Before photons decoupled, the gravitational and high-pressure interactions in the plasma produced oscillations that radiated spherically outward from overdense regions, causing photons and baryons to travel through space together. However, as mentioned earlier, when the universe cooled and photons decoupled, the baryonic matter that was present in these oscillations became essentially frozen in space. The photons were free to stream throughout the now-transparent universe. This provided a so-called standard ruler, the distance that these baryons had travelled as an acoustic oscillation prior to recombination. Linking this back to Dark Energy requires the important detail that the radius of the spherical shell of baryons is tied to the expansion rate of the universe. As Dark Energy has propelled the Universe to expand, this standard ruler has expanded with it. See Figure 3. DESI's 3-D map of galaxies will provide a much clearer picture of the universe's large-scale structure, which is our only hope of finding the imprint of BAO. DESI will show (and has already shown) that there exists an overabundance of galaxies separated by a distance equivalent to the length of the standard ruler. Today, the size of this standard ruler is thought to be approximately 490 million lightyears. DESI represents an impressive step into the era of precision cosmology, and it will require the efforts of hundreds of scientists to make sense of the vast quantities of data we expect by 2026. Written by Joseph Brennan Related articles: Light Project Gallery










