top of page

Search Index

355 results found

  • Meet the microbes that feed phosphorus to plants | Scientia News

    About phosphate-solubilising micro-organisms and their role in the phosphorus cycle Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Meet the microbes that feed phosphorus to plants Last updated: 15/01/26, 19:00 Published: 27/11/25, 08:00 About phosphate-solubilising micro-organisms and their role in the phosphorus cycle Plants need phosphorus to make biological molecules like DNA, ATP, and the phospholipid bilayers that form cell membranes. Most phosphorus on Earth is found in its most oxidised form, phosphate (PO 4 3- ). Plant roots can only absorb soluble phosphate ions, but 80% of the phosphate in soil is insoluble and therefore unavailable for plant growth. Enter phosphate-solubilising micro-organisms. What are phosphate-solubilising micro-organisms? Phosphate solubilisation is the process by which micro-organisms convert insoluble phosphorus sources, like rocks or the biomass of dead organisms, into bioavailable phosphate ions (Figure 1). Examples of phosphate-solubilising bacteria come from the genera Bacillus , Pseudomonas , Rhizobium, Escherichia , Streptomyces , and Micromonospora , as well as some cyanobacteria. Phosphate-solubilising fungi include Aspergillus , Penicillium , Mucor , Rhizopus , Rhizophagus, and Glomus . The latter two fungal genera are arbuscular mycorrhizal (AM) fungi - more on them later. The chemistry underpinning phosphate solubilisation is complex but can broadly be split into inorganic and organic processes ( Figure 1 ). Some of these inorganic and organic processes are described in the rest of this article. Solubilising inorganic phosphate Inorganic insoluble phosphate is solubilised by microbial acids. When phosphate-containing rocks like apatite are broken down by weathering, the resulting smaller rock particles enter the soil. Micro-organisms secrete organic acids – usually gluconic acid but occasionally lactic, citric, oxalic, or other acids – to solubilise these rock particles. Acids work on inorganic phosphate in two ways. Firstly, they dissolve weathered rock pieces due to their low pH. Secondly, negatively charged acid anions (lactate, citrate, etc) displace the phosphate captured by aluminium, iron, magnesium, and calcium minerals in the rock. Organic acids are just some of the chemicals secreted by microbes to solubilise inorganic phosphate. Solubilising organic phosphorus On the other hand, microbial enzymes solubilise organic phosphorus during the decomposition of organic matter. The two types of phosphate-solubilising enzymes are phosphatases, which solubilise 90% of organic phosphorus, and phytases, which solubilise the remaining 10%. Both types of enzyme break the ester bonds linking a PO 4 3- group to the rest of a biological molecule. By expressing genes encoding phytases and phosphatases, soil micro-organisms make phosphorus available for plants. Arbuscular mycorrhizae (AM) AM fungi provide plants with phosphorus in a symbiotic relationship. These fungi consist of hyphae, which are long, thin strands of cells that extend a plant’s root network and access phosphorus where roots cannot (Figure 2). AM fungi have a three-pronged approach to improving a plant’s phosphorus uptake: firstly, they absorb phosphate from the soil and give it to the plant in exchange for carbon. Secondly, they solubilise phosphate by secreting acids and phosphatases. Finally, AM fungi recruit phosphate-solubilising bacteria to the root system by feeding them sugars and amino acids. Conclusion Phosphate-solubilising bacteria and fungi provide plants with phosphorus, an essential element for making nucleic acids and ATP. Most phosphate is inaccessible to plants, locked up in rocks and biomass. By secreting organic acids and enzymes, soil micro-organisms convert this inaccessible phosphate into a form that plant roots can absorb and incorporate into their own biomass. When that plant dies, the organic phosphorus is solubilised again for another plant to use, so phosphorus never runs out. Therefore, phosphate-solubilising microbes are a small part of the invisible world that keeps our planet green. Written by Simran Patel Related article: Human activity and the phosphorus cycle REFERENCES Silva LI da, Pereira MC, Carvalho AMX de, et al. Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture 2023; 13: 462. Pang F, Li Q, Solanki MK, et al. Soil Phosphorus Transformation and Plant Uptake Driven by Phosphate-solubilizing Microorganisms. Front Microbiol ; 15. Epub ahead of print 27 March 2024. DOI: 10.3389/fmicb.2024.1383813 . Schipanski ME, Bennett EM. Chapter 9 - The Phosphorus Cycle. In: Weathers KC, Strayer DL, Likens GE (eds) Fundamentals of Ecosystem Science (Second Edition) . Academic Press, pp. 189–213. Tian J, Ge F, Zhang D, et al. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology 2021; 10: 158. Project Gallery

  • Sleep less…remember less: the hidden link between sleep and memory loss | Scientia News

    Not getting enough sleep can increase the risk of developing Alzheimer’s Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Sleep less…remember less: the hidden link between sleep and memory loss Last updated: 10/07/25, 18:27 Published: 17/04/25, 07:00 Not getting enough sleep can increase the risk of developing Alzheimer’s People often don’t get enough sleep for a variety of reasons, ranging from intentional choices like work or study demands (because who needs sleep when you’ve got deadlines, right?), to the growing concern with screen time (a.k.a. the “I’ll just watch one more episode” syndrome), and of course, procrastination (where your brain convinces you that 3 a.m. is a great time to suddenly get productive). But it’s not all fun and games—serious issues like insomnia, sleep apnoea, family responsibilities, or even shift work can also interfere with rest. Sleep disorders are increasingly common, with around one in three people in the UK affected, and they’re particularly prevalent among the elderly. However, not getting enough sleep can increase the risk of developing Alzheimer’s disease (AD). How do sleep disorders impact Alzheimer’s disease? Insomnia is characterised by difficulty falling asleep or staying asleep, which can lead to prolonged fatigue and memory issues. As shown in Figure 1 , people with insomnia tend to have some similarity in markers as those with Alzheimer’s disease, such as an increased level of Aβ and tau proteins in the brain. This is primarily because a lack of sleep prevents the effective removal of harmful products from the brain – this accumulation increases a person’s risk of AD. A plethora of experimental studies on humans and animals have shown that lack of sleep can lead to increased circulating levels of TNF-α and the gene resulting in more TNF-α secretion. This pro-inflammatory cytokine exacerbates AD pathology because neuroinflammation can lead to dysfunction and cell death, which are key markers of AD. Other pro-inflammatory cytokines, like IL-1, have been found to be relevant in the link between sleep deprivation and AD. Overexpression of IL-1 in the brain leads to abnormal changes in nerve cell structures especially relating to Aβ plaques. This highlights IL-1’s key role in plaque evolution and the synthesis of Amyloid Precursor Protein, which promotes amyloid production that eventually results in AD pathology. What type of sleep can impact one’s risk of Alzheimer’s disease? Studies using more objective measures, like actigraphy (which tracks sleep-wake activity), found that sleep quality (sleep efficiency) is more important than total sleep time. For example, women with less than 70% sleep efficiency were more likely to experience cognitive impairment. Increased wakefulness during the night also moderated the relationship between amyloid deposition (a hallmark of AD) and memory decline. Uncertainties… However, it remains unclear whether poor sleep directly causes AD or if the disease itself leads to sleep disturbances. Some studies suggest a bidirectional relationship. Aging itself leads to poorer sleep quality, including reduced sleep efficiency, less slow-wave sleep (SWS), and more frequent awakenings. Sleep disorders like obstructive sleep apnoea, insomnia, and restless legs syndrome also become more common with age. What are the next steps? The good news is that many sleep disorders, including insomnia, are manageable, and improving sleep quality could be a simple yet powerful way to reduce Alzheimer’s risk. Additionally, early diagnosis and treatment of conditions like sleep apnoea and insomnia may help slow or even prevent neurodegenerative changes. s researchers continue to explore the intricate relationship between sleep and Alzheimer’s, one thing is clear: getting a good night’s sleep isn’t just about feeling refreshed. It is a crucial investment in long-term brain health. Written by Blessing Amo-Konadu Related articles: Overview of Alzheimer's / Hallmarks of Alzheimer's / CRISPR-Cas9 in AD treatment / Memory erasure / Does insomnia run in families? REFERENCES Lucey, B. (2020). It’s complicated: The relationship between sleep and Alzheimer’s disease in humans. Neurobiology of Disease , [online] 144, p.105031. doi: https://doi.org/10.1016/j.nbd.2020.105031 . NHS (2023). Insomnia . [online] www.nhsinform.scot . Available at: https://www.nhsinform.scot/illnesses-and-conditions/mental-health/insomnia/ . Pelc, C. (2023). Not getting enough deep sleep may increase the risk of developing dementia . [online] Medicalnewstoday.com . Available at: https://www.medicalnewstoday.com/articles/not-getting-enough-deep-sleep-may-increase-dementia-risk#Clarifying-the-link-between-sleep-aging-and-dementia-risk [Accessed 22 Dec. 2024]. Sadeghmousavi, S., Eskian, M., Rahmani, F. and Rezaei, N. (2020). The effect of insomnia on development of Alzheimer’s disease. Journal of Neuroinflammation , 17(1). doi: https://doi.org/10.1186/s12974-020-01960-9 . Project Gallery

  • Physics | Scientia News

    These articles range from astrophysics and space science to nuclear physics, harmonic motion, and thermodynamics. Physics Articles These articles range from astrophysics and space science to nuclear physics, harmonic motion, and thermodynamics. You may also like: Maths, Technology , Engineering The liquid viscosity of castor oil An experiment determining the liquid viscosity of castor oil using spheres Summary of a pendulum experiment An experiment on the pendulum and its relation to gravity Female Nobel Prize winners in physics Who were they and what did they achieve? The Northern Lights in the UK What determines the Northern Lights to be seen in your country? The James Webb Space Telescope And its significance in space exploration Geoengineering Will it work to save the environmental crisis? The Lyrids meteor shower What is it and when does it happen? Nuclear fusion Unleashing the power of the stars Colonising Planet Mars Which fuel would be used to colonise Mars? Superfluids And their incredibly slippery nature Total solar eclipses A description of them Mercury The closest planet to the Sun The DESI instrument DESI stands for the Dark Energy Spectroscopic Instrument Cumulus clouds How they form and their link to the weather Hubble Tension The cause of the Hubble Tension discrepancy is unknown Artemis The lunar south pole base A room-temperature superconductor? The search for one Physics in healthcare Incorporating nuclear medicine The Crab nebula In the constellation of Taurus The physics of LIGO LIGO stands for Laser Interferometer Gravitational-Wave Observatory Next

  • The MAPK/ERK signalling pathway in cancer | Scientia News

    Dysregulation of this pathway occurs in many different types of cancers Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The MAPK/ERK signalling pathway in cancer Last updated: 24/02/25, 11:29 Published: 20/02/25, 08:00 Dysregulation of this pathway occurs in many different types of cancers Introduction The mitogen-activated protein kinase (MAPK) signalling pathway is an important pathway in apoptosis, proliferation, differentiation, angiogenesis and metastasis. It is a protein kinase pathway (causes phosphorylation) with between 3-5 sets of kinases and is known to be activated via Ras, KC-mediated (Kupffer cells/liver macrophages), Ca2+, or G protein-coupled receptors. The MAPK/ERK pathway, also known as the Ras-Raf-MEK-ERK pathway, is conserved in mammals, and dysregulation of this pathway occurs in many different types of cancers. MAPK/ERK function Ras (GTPase) activates Raf (serine/threonine kinase), which activates MEK1/2 (tyrosine & serine/threonine kinases) and ERK1/2 (serine/threonine kinases), which controls certain transcription factors. ERK1/2 also phosphorylates various substrates in the cytoplasm (not shown). This results in gene expression, which can cause apoptosis, cell cycle regulation, differentiation, proliferation, etc. (Fig. 1). It is estimated that there are more than 150 target substrates of ERK1/2, either directly or indirectly. Furthermore, Ras and RAF have several different subtypes which have different functions. Ras has four different subtypes, which are the GTPases: HRAS, KRAS4A/4B, and NRAS, with KRAS being the common form found in human cancers. RAF has subtypes, which are the kinases: ARAF, BRAF, and CRAF (in humans). Ras is activated when GRB2 (growth-factor-receptor bound protein 2) binds to SOS (son of sevenless). This occurs via the complex moving to the cell membrane upon activation of a transmembrane receptor, such as EGFR (epidermal growth factor receptor). SOS transports the signal from the receptor to RAS and aids in the conversion of RAS-GDP to RAS-GTP. This switches ‘on’ RAF, which leads to the phosphorylation of MEK and ERK (Fig. 1). ERK is then able to move into the nucleus and alter gene expression, of genes such as CREB, MYC, FOS, MSK, ELK, JUN, etc., which are involved in processes such as metabolism, proliferation, angiogenesis (formation of blood vessels), haematopoiesis (formation of blood cells), wound healing, differentiation, inflammation, and cancer. However, ERK is also able to activate other substrates in the cytoplasm, such as BIM, RSK, MNK, and MCL, which are involved in processes such as apoptosis and blood pressure regulation. A regular level of ERK expression is needed for activation of genes involved in the cell cycle and to inhibit negative cell cycle control. ERK phosphorylates Cyclin D and Cdk4/6, which are bound together and aid the cell in the movement from G1 (gap) to the S phase (DNA synthesis/repair) of the cell cycle. MAPK/ERK pathway in cancer The MAPK/ERK pathway has been linked with many cancers, such as colon, thyroid, melanoma, pancreatic, lung, and glioblastoma. Mutations in epidermal growth factor receptor (EGFR), Ras, and Raf are well-known to cause cancer, with an estimated 33% of cancers containing Ras mutations, and an estimated 8% being caused by Raf mutations. It is also estimated that 85% of cancers have elevated activity of MEK. The MAPK/ERK pathway has also been shown to interact with the PI3K/Akt pathway, which controls the cell cycle and causes increased cell proliferation, which is obviously an important factor in tumourigenesis (tumour initiation). Regulation of the MAPK/ERK pathway There is a negative feedback mechanism of ERK1/2 on RAS/RAF/MEK, by ERK1/2 phosphorylating SOS, which causes the RAF-RAS link to be disrupted. ERK also inhibits MEK via the phosphorylation of BRAF and CRAF. There are inhibitors for Ras/Raf/MEK/ERK, but not all of these inhibitors work well/are without issues. ERK is problematic, in that their ATP-binding sites are very like cell cycle proteins, so are more difficult to inhibit. Also, it is difficult to target Ras due to its high GTP binding affinity, profuse cellular GTP, and lack of appropriate binding pockets. Therefore, the main focus currently appears to be on Raf/MEK inhibition. Raf inhibitors include drugs such as sorafenib, vemurafenib, encorafenib, and dabrafenib (these drugs are used on specific BRAF mutations). On the other hand, MEK inhibitors include drugs such as trametinib, cobimetinib, binimetinib, and selumetinib (these drugs can be used on specific mutations in Ras and Ras/Raf). Negative feedback mechanisms tightly control the MEK/ERK pathway and therefore great care is taken with inhibitor drug doses. To illustrate, if the doses are too low, the negative feedback loops are activated, which can lead to drug resistance/ poor therapeutic outcome. Conclusion The MAPK/ERK pathway is essential for several cellular processes, such as apoptosis, cell cycle regulation, differentiation, and proliferation. Therefore, it has a critical role in tumourigenesis. Raf and MEK in particular are susceptible to inhibition, which has led to the production of several different drugs for use in various types of cancer. There are currently other clinical trials in progress, and these will hopefully lead to further therapies for other cancers involved in this pathway. Written by Eleanor R Markham Related articles: HIPPO signalling pathway / Thyroid cancer REFERENCES Lake, D., Corrêa, S.A.L. & Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci. 73 , 4397–4413 (2016). https://doi.org/10.1007/s00018-016-2297-8 Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis. 2022 May 20;10(1):76-88. doi: 10.1016/j.gendis.2022.05.006. PMID: 37013062; PMCID: PMC10066287 Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 2022 Oct;85:123-154. doi: 10.1016/j.semcancer.2021.05.010. Epub 2021 May 13. PMID: 33992782. Project Gallery

  • Which fuel will be used for the colonisation of Mars? | Scientia News

    Speculating the prospect of habitating Mars Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Which fuel will be used for the colonisation of Mars? 01/10/25, 10:48 Last updated: Published: 30/04/23, 11:06 Speculating the prospect of habitating Mars The creation of a “Planet B” is an idea that has been circulating for decades; however we are yet to find a planet that is similar enough to our Earth that would be viable to live on without major modifications. Mars has been the most widely talked about planet in the media, and is commonly thought to be the planet that we know the most about. So, could it be habitable? If we were to move to Mars, how would society thrive? The dangers of living on Mars As a neighbour to Earth, Mars might be classed as habitable without more knowledge. Unfortunately, it is quite the opposite. On Earth, humans have access to air with an oxygen content of 21%, however Mars only has 0.13% oxygen. The difference in the air itself suggests an uninhabitable planet. Another essential factor of human life is food. There have indeed been attempts to grow crops in Martian soil, including tomatoes, with great levels of success. Unfortunately, the soil is toxic therefore ingesting these crops could cause significant side effects in the long term. It could be possible to introduce a laboratory that crops could be grown in, modelling Earth soil and atmospheric conditions however this would be difficult. Air and food are two resources that are essential and could not readily be available in a move to Mars. Food could be grown in laboratory style greenhouses and the air could be processed. It is important to note that these solutions are fairly novel. The Mars Oxygen ISRU Experiment The Mars Oxygen ISRU Experiment (MOXIE) was a component of the NASA Perseverance rover that was sent to Mars during 2020. Solid oxide electrolysis converts carbon dioxide, readily available in the atmosphere of Mars, into carbon monoxide and oxygen. MOXIE contributes to the idea that, in the move to Mars, oxygen would have to be ‘made’ rather than being readily available. The MOXIE experiment utilised nuclear energy to do this, and it was shown that oxygen could be produced at all times of day in multiple different weather conditions. It is possible to gain oxygen on Mars, but a plethora of energy is required to do so. What kind of energy would be better? With accessing oxygen especially, the energy source on Mars would need to be extremely reliable in order to ensure the population is safe. It is true that fossil fuels are reliable however it is increasingly obvious that the reason a move to Mars would be necessary is due to the lack of care of the Earth therefore polluting resources are to be especially avoided. A combination of resources is likely to be used. Wind power during the massive dust storms that find themselves on Mars regularly and solar power in clear weather, when the dust has not yet settled over the surface. One resource that would be essential is nuclear power. The public perception is mixed yet it is certainly reliable and that is the main requirement. After all, a human can only survive for around five minutes without oxygen. Time lost due to energy failures would be deadly. Written by Megan Martin Related articles: Exploring Mercury / Artemis: the lunar south pole base / Total eclipses Project Gallery

  • Mathematical models in cognitive decision-making | Scientia News

    Can we quantify choices? Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Mathematical models in cognitive decision-making 10/07/25, 10:21 Last updated: Published: 19/11/23, 17:33 Can we quantify choices? The simple answer to this question is yes because even if you do not know it, we rank different choices in our heads all the time. Whether it's deciding what to have for breakfast, choosing a route to work, or evaluating job offers, our minds are constantly engaged in the intricate process of decision-making. In this article, we cover some of the mathematical techniques we use to make these decisions. Bayesian statistics Bayesian statistics, named after Thomas Bayes, is a branch of statistics that employs probability theory to quantify and update our beliefs or degrees of certainty about events or hypotheses. At its core is Bayes' Theorem, which is a fundamental principle in Bayesian inference. Bayes' Theorem provides a framework for updating our initial beliefs (prior probabilities) with new evidence (likelihood) to arrive at revised beliefs (posterior probabilities). One of the main reasons for the theorem’s popularity is the validity of what it was proposing. At its essence, Bayes' Theorem acknowledges that our beliefs and understanding of the world are not fixed but can and should change as we learn more information. Hence, the likeliness of events changes as new information surfaces which makes perfect sense now but was incredibly revolutionary when the theorem was first introduced. This technique is undeniably used as core cognitive decision-making process helping us make choices based on the likelihood of events. Game theory and utility theory Game theory and utility theory serve as essential mathematical tools in our exploration of cognitive decision-making. Game theory reveals the strategic thinking behind decisions and their consequences, shedding light on complex interactions that influence our choices in various contexts, such as economics and social behaviour. The study of Game theory includes evaluating and optimising payoff matrices which are the framework to model the payoff from the combination of different decisions. An example is shown below where Alice is the row choices and Bob are the column choices. Alice and Bob’s payoffs are dependent on each other’s actions so decision making becomes difficult which is one of the reasons studying game theory is so interesting. Utility theory, which has ties to Game theory, quantifies how individuals assess the desirability of options. The more you desire an outcome, the higher amount of utility you assign to it. The theory plays a pivotal role in understanding decision preferences and trade-offs. By analysing utility functions, we gain insights into how individuals optimize their choices to maximize satisfaction, aligning our understanding of human decision-making with mathematical precision. Other mathematical frameworks and applications In addition to Bayesian statistics, game theory, and utility theory, several other mathematical frameworks enrich our understanding of cognitive decision-making. These include: - Markov Decision Processes (MDPs): Essential for sequential decision-making and reinforcement learning, used in robotics, artificial intelligence, and operations research. - Prospect Theory: Crucial for understanding how individuals make decisions involving risk and uncertainty, particularly in fields like economics and behavioural psychology. - Decision Trees: Widely used for visualizing complex decision-making processes and often applied in data analysis and operations research. - Neural Networks: Critical for modelling complex cognitive decision-making processes, particularly in machine learning and deep learning applications. I would like to thank you for reading. Be sure to check out other mathematics articles on the site! Written by Temi Abbass Related articles: Behavioural economics I , II and III ; Markov Chains Project Gallery

  • Pangolins: from poached to protected | Scientia News

    'Manis pentadactyla' is the dominant pangolin species in China Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Pangolins: from poached to protected Last updated: 27/03/25, 11:15 Published: 27/02/25, 08:00 'Manis pentadactyla' is the dominant pangolin species in China This is article no. 4 in a series on animal conservation. Next article: How Gorongosa National Park went from conflict to community . Previous article: Beavers are back in Britain Pangolins are a group of eight scaled mammal species from Asia and Africa. They are being poached mainly for their scales and meat, driving them to dangerously low numbers. Although commercial trade is banned for all species, pangolins are the most illegally trafficked animals in the world. One pangolin species has a fascinating story because of its appeal to traditional medicine and demand in a populated country. That species is the Chinese pangolin Manis pentadactyla , and this article will describe its threats and conservation efforts. About pangolins in China Manis pentadactyla is the dominant pangolin species in China, living south of the Yangtze River ( Figure 1 ). The Sunda pangolin Manis javanica has a tiny habitat in southwest China ( Figure 1 ). Pangolins prefer natural forests, with an ambient temperature of 18-27°C and plenty of termites and ants to eat. Both Chinese species were classified as critically endangered in 2014, though accurately estimating pangolins' distribution and population size is complex. This is because they are nocturnal, solitary, and live underground. Pangolins also make no obvious sounds, or leave no apparent traces, for scientists to detect their presence. Despite these challenges, Chinese scientists are learning more about pangolin habitat to improve conservation strategies. Threats facing Chinese pangolins Chinese pangolins are critically endangered for various human-caused reasons ( Figure 2 ). The biggest reason is poaching because pangolin meat is a local delicacy, and its scales, bones, and blood are used in traditional Chinese medicine. Pangolin scales have recently been removed from the official list of ingredients for Chinese medicine, but that has not stopped hospitals from selling them. In a recent study, only a third of Chinese hospitals selling roasted pangolin scales had the required permit. Permits are also needed to sell or manufacture patented medicines containing pangolin scales, considered the gold standard for treating many conditions. Because these medicines and pangolin meat are so revered, one hunted pangolin sells for up to 90,000 yuan (≈£9800). This has incentivised the hunting and illegal trafficking of non-native pangolin species into China - where they could outcompete, or spread diseases to native species. Thus, illicit trade for traditional medicine threatens Chinese pangolins. Habitat destruction has made Chinese pangolins more vulnerable to poaching. Natural forests are being destroyed to grow crops, grow economic trees like rubber, or build human infrastructure. Farms or rubber plantations have fewer ants and termites than natural forests, so pangolins cannot survive there. As a result, in some parts of China, the pangolin geographical range halved in 30 years. With acres of this unsuitable habitat separating fragments of forest, pangolins may struggle to find mates, and inbreeding could be an issue. Thus, habitat loss is contributing to the decline of the Chinese pangolin. Conservation Conservation measures were taken in the last few decades in response to the pangolin population decline. In China, hunting pangolins was first restricted in 1987, and they were given legal protection in 1989. The Chinese government tightened this protection in 2020 after suggestions that pangolins were an intermediate species for SARS-CoV-2 to transmit from bats to humans. In addition to national restrictions, international authorities restricted pangolin trade, and the Chinese government ran public awareness campaigns about their endangered status ( Figure 3 ). Pangolins also have 100,000 squared kilometres of protected habitat in China, though this is only 9% of what models predict as a suitable pangolin habitat. Habitat protection and trade restrictions are essential to protect pangolins because captive breeding has either failed or acted as a front for illegal trafficking. Although Chinese pangolin conservation has come far in the last 40 years, more can be done. Conclusion Humans have driven Chinese pangolins to near extinction, mainly by hunting for traditional medicine ingredients and destroying native habitats. Conservation efforts have primarily involved legal and habitat protection, but pangolins are challenging to monitor and impossible to breed in captivity. Hopefully, public awareness and a clampdown on illegal trafficking will help to save this unique mammal species. Written by Simran Patel Related articles: Conservation of marine iguanas / Galapagos tortoises REFERENCES Challender, D. et al. (2013) IUCN Red List of Threatened Species: Manis pentadactyla . IUCN Red List of Threatened Species . Available from: https://www.iucnredlist.org/en (Accessed 23rd October 2024). Convention On International Trade In Endangered Species Of Wild Fauna And Flora (2017) Appendices I, II and III valid from 4 October 2017 . Available from: https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdf . Mammoser, G. (20th February 2017) Chinese Police Go After ‘Pangolin Princess’ Who Proudly Eats Endangered Species. VICE . Available from: https://www.vice.com/en/article/chinese-police-go-after-pangolin-princess-who-proudly-eats-endangered-species/ (Accessed 23rd October 2024). Wang, Y., Turvey, S.T. & Leader-Williams, N. (2023) The scale of the problem: understanding the demand for medicinal pangolin products in China. Nature Conservation . 52: 47–61. Available from: https://doi.org/10.3897/natureconservation.52.95916 (Accessed 23rd October 2024). Xinhua News Agency (2015) Opinions of the Central Committee of the Communist Party of China and the State Council on Accelerating the Construction of Ecological Civilization . Beijing: The Central Government of the People’s Republic of China. Available from: https://www.gov.cn/xinwen/2015-05/05/content_2857363.htm (Accessed 23rd October 2024). Zhang, F., Chen, Y., Tang, X., Xi, F., Cen, P., Pan, Z., Ye, W. & Wu, S. (2024) Predicting the distribution and characteristics of Chinese pangolin habitat in China: Implications for conservation. Global Ecology and Conservation . 51: e02907. Available from: https://www.sciencedirect.com/science/article/pii/S2351989424001112 (Accessed 23rd October 2024). Zhang, F., Wang, W., Mahmood, A., Wu, S., Li, J. & Xu, N. (2021) Observations of Chinese pangolins ( Manis pentadactyla ) in mainland China. Global Ecology and Conservation . 26: e01460. Available from: https://www.sciencedirect.com/science/article/pii/S235198942100010X (Accessed 23rd October 2024). Zhang, F., Wu, S. & Cen, P. (2022) The past, present and future of the pangolin in Mainland China. Global Ecology and Conservation . 33: e01995. Available from: https://www.sciencedirect.com/science/article/pii/S235198942100545X (Accessed 19th October 2024). Project Gallery

  • Why the Northern Lights were seen in the UK | Scientia News

    The Northern Lights, or Aurora Borealis, are a result of the Sun's immense gravity weakening with increasing distance from its centre, enabling the outermost regions of the Sun's corona to escape as solar wind, which travels towards Earth. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Why were the Northern Lights seen in the UK? Last updated: 13/11/24 Published: 05/04/23 On the 26th and 27th of February 2023, the UK experienced a rare treat - a “Red Alert” indicating a good chance of seeing the Northern Lights, or Aurora Borealis. This captivating event drew people from all over the country, eager to witness one of nature's most awe-inspiring displays. But why is it that opportunities to observe the Northern Lights from the lower latitudes of the UK, France, and Germany are so rare? To truly appreciate the answer to this question, it's important to understand the fascinating science behind the Northern Lights and the 'Northern' aspect that gives them their name. What are the Northern Lights? The Northern Lights, or Aurora Borealis, are a result of the Sun's immense gravity weakening with increasing distance from its centre, enabling the outermost regions of the Sun's corona to escape as solar wind, which travels towards Earth. The boundary at which the solar wind and corona are distinguished is known as the Alfvén surface. This solar wind is a plasma composed of protons, electrons, and other charged particles, which collide with atoms in Earth's atmosphere and excite the electrons in these atoms to higher energy levels. Upon de-excitation, the energy gained via collisions is released by the emission of light. Lucky observers saw the characteristic emerald green hues, which result from oxygen atoms at an altitude of around 100km. Those luckier still may have seen crimson aurorae caused by oxygen atoms at roughly 150km upwards. We observe different colours because the chemical composition of Earth's atmosphere varies with altitude. The Northern Lights. Credit: Evan Boyce Why are they (typically) only visible at the poles? The solar wind travels at millions of kilometres per hour and engulfs the Earth. Equatorial regions are protected by Earth's magnetic field as it deflects the solar wind. However, the magnetic field converges at Earth's magnetic poles, redirecting the charged particles of the solar wind to these high-latitude regions, such as Scandinavia and Canada. The same effect occurs at the southern magnetic pole, only these lights are named "Aurora Australis." The "auroral zone" is the region of Earth's atmosphere associated with this magnetic funnelling of charged particles. It takes the shape of an annulus centred on Earth's north magnetic pole and is usually in the 65°-70° latitude range. Why were they visible in the UK last month? The “auroral zone” is key to understanding this question. It is by no means a fixed or static region. There happened to be two coronal mass ejections (CMEs) which arrived at Earth on consecutive nights. The much greater intensity of these CMEs can give rise to distortions to the magnetic field lines resulting in what is called a geomagnetic storm. This triggers the expansion of the ‘auroral zone’ to lower latitudes, thus allowing the Northern Lights to be seen by UK observers. A graph displaying geomagnetic activity with universal time (UTC). Credit: @aurorawatchuk on Twitter How to know when to look? AuroraWatch UK is a free service run by the Lancaster University Department of Physics, providing alerts on the likelihood of observing the Northern Lights. This likelihood is based on geomagnetic activity measurements - disturbances in Earth’s magnetic field - from a network of magnetometers called SAMNET (Sub-Auroral Magnetometer Network). I will certainly be eagerly awaiting the next “Red Alert” and hoping for clear skies! Written by Joseph Brennan

  • An introduction to epigenetics | Scientia News

    Unveiling the dance between genes and the environment Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link An introduction to epigenetics 09/07/25, 10:47 Last updated: Published: 04/10/23, 17:01 Unveiling the dance between genes and the environment In recent times, a new area of genetics termed epigenetics has emerged. It seeks to uncover the relationship between our genes and environment. At the core of this novel field is the principle that gene expression can be altered without modifications to the DNA sequence itself. Epigenetic changes to DNA involve the addition of methyl or acetyl groups. Methyl groups decrease gene expression by making DNA more tightly bound around histones, forming heterochromatin, whereas acetyl groups do the opposite; they increase gene expression by loosening histone-bound DNA, forming euchromatin. The addition of these chemical groups to DNA is mediated by enzymes that act on signals our bodies receive from our environment such as diet, stressors, and exercise. Epigenetic mechanisms of gene regulation have gained notoriety in the scientific community as it is suggested that these changes can be passed down to future generations through germline cells. This means that our grandparents’ diets can influence whether we develop diabetes or not. This neo-Lamarckian concept of evolution challenges the current Darwinian understanding of evolutionary genetics where phenotypic traits are believed to emerge due to genetic mutations and natural selection. Understanding epigenetic modifications opens new doors for potential clinical therapies as by modifying harmful epigenetic changes, we may be able to treat various diseases. This field also highlights the importance of a healthy lifestyle, proper nutrition, and avoiding stressors like smoking and radiation, not only for us but for future generations as well. A noteworthy study on exercise A study conducted by Sailani et. al delves into the effects of lifelong exercise on DNA methylation patterns in genes related to metabolism, skeletal muscle properties, and myogenesis. They used two groups with different levels of physical activity. Individuals from one group reported being physically active by playing various sports and engaging in other forms of activity such as cycling, hiking, running, and swimming; the other group were reported to be physically inactive but healthy. The active group exhibited promoter hypomethylation in genes related to insulin sensitivity, muscle repair and development, and mitochondrial respiratory complexes. Compared to the inactive individuals, a significant increase in hypomethylation was seen in 714 promoters in the active group. Bearing in mind that the inactive group were healthy despite being inactive, this significant difference in methylation pattern is remarkable to see and hits home the gravity of epigenetic influence in our lives. As a result of hypomethylation, these genes would have a higher rate of expression in the active individuals. An example of one such gene is GYG2 which codes for the glycogenin 2 enzyme involved in glycogen synthesis. With enhanced glycogen synthesis we can expect to see improved physical performance and recovery in the active individuals. Along with improved skeletal muscle properties and metabolic profiles, we can assume that the active group will have a higher life expectancy and quality of life than the inactive group. As we can see, epigenetics holds a lot of promise for the future of genetic research. By understanding the extent to which epigenetic modifications affect our lives, we can take measures to encourage positive changes to our genomes for greater health, happiness, and vitality. Written by Malintha Hewa Batage Related articles: How epigenetic modifications give the queen bee her crown / Complex disease I- schizophrenia / Famine-induced epigenetic changes Project Gallery

  • The chronotypes | Scientia News

    The natural body clock and the involvement of genetics Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The chronotypes 10/07/25, 18:28 Last updated: Published: 27/11/24, 11:47 The natural body clock and the involvement of genetics Feeling like heading to bed at 9 pm and waking up at the crack of dawn? These tendencies define your chronotype, backed up by changes within your body. A generally overlooked topic, chronotypes affect our everyday behaviour. Many people innately associate themselves with a certain chronotype, but what do we know about how these physiological differences are caused at a molecular level? The word ‘chronotype’ was first coined in the 1970s, combining the Greek words chrono (time) and type (kind or form). While the term is relatively modern, the concept emerged in the 18th century. Researchers in the 1960s and 1970s, like Jürgen Aschoff, explored how internal biological clocks influence our sleep-wake cycles, leading to the classification of people into morning or evening types based on their activity patterns. The first evidence of body clocks was found in plants rather than humans, thus leading to the invention of flower clocks, which were used to tell the time of the day. Before delving into the details, let us be introduced to the general categories of chronotypes, which describe a person’s inclination to wake up and sleep while also affecting productivity periods. We know of the following three categories: The morning type (also referred to as larks): they are inclined to wake up and go to bed early because they feel most alert and productive in the mornings. The evening type (also called the owls): they feel most alert and productive in the evenings and onwards, so they are inclined to wake up and go to bed later. The intermediate types (also referred to as the doves): they fall in the middle of this range. Let’s explore what we know about the genetics that prove that chronotypes are a natural phenomenon. Genetics of chronotypes The main determining factor in our chronotypes is the circadian period. This is the body’s 24 hour cycle of changes that manifest into feelings of productivity and energy or tiredness. The length of this is crucial in determining our chronotypes. More importantly, specific physiological changes that cause these effects are melatonin and core body temperature. One study suggested that the morning types might have circadian periods shorter than 24 hours, whereas evening chronotypes might have circadian periods longer than 24 hours. A major clock gene is PER, which includes a collection of genes known as PER1, PER2 and PER3, which are thought to regulate circadian period factors. Specifically, it has been observed that a delay in the expression of the PER1 gene in humans causes an increased circadian period. Possible causes for this delay may be rendered to a variation within the negative feedback loop that PER1 operates in, including hereditary differences, environmental causes, changes to hormonal signals and age. This process may describe the mechanism behind the evening chronotype. Molecular polymorphs in the PER3 gene are thought to cause shorter circadian rhythms and the manifestation of the morning types. Similarly, a polymorph in the PER3 gene can be caused by a plethora of causes, as described for PER1. These nuances cause differences in the periodic release and stop of hormones which control the circadian rhythm, such as melatonin and body temperature. This is important in its power to control our energy levels, windows of productivity, and sleep cycles. The consensus remains that chronotypes are attributable to genetic premeditation by 50%, however, it has also been observed that chronotypes are prone to change with advancing age. Increased age is associated with an inclination towards an earlier phase chronotype. Age-related variation has been observed to be higher in men. There also exists an association between geographical locations and phase preference; increasing latitude (travelling North or South) from the earth's equator is associated with later chronotypes. Of course, many variations and factors come into play to affect these findings, such as ethnic genetics, climate, work culture and even population density. The effect on core body temperature and melatonin Polymorphisms in the PER3 cause a much earlier peak in body temperature and melatonin in the morning than in the evening and intermediate types. These manifest as the need to sleep much earlier in the morning and a decreased feeling of productivity later in the day. In contrast, the evening types experience a later release of melatonin and a drop in core body temperature, causing a later onset of tiredness and lack of energy. It can then be inferred that the intermediate types are affected by the expression of these genes in a way that falls in the middle of this spectrum. Conclusion Understanding differences in circadian rhythms and sleep-wake preferences offers valuable insights into human behaviour and health. Chronotypes influence various aspects of daily life, including sleep patterns and quality, cognitive performance and susceptibility to specific health conditions, including sleep-wake conditions. An extreme deviation in circadian rhythms and sleep cycles may lead to such conditions as Advanced sleep-wake phase Disorder (ASPD) and Delayed sleep-wake phase Disorder (DSPD). Recognising these variations is also helpful in optimising work schedules and aligning to jet lags, improving mental and physical health by tailoring our biological rhythms to our environments. Many individuals opt to do a sleep study at an institution to gain insights into their circadian rhythms. A healthcare professional may also prescribe this if they suspect you have a circadian disturbance such as insomnia. The Morning-Eveningness Questionnaire (MEQ) The MEQ is a self-reported questionnaire you may complete to gain more insight into your chronotype category. Clinical psychologist Micheal Breus created it and uses different animals to categorise the chronotypes further. The framework suggests that the Bear represents individuals whose energy patterns are entrained to the rising and the sun's setting and are the most common types in the general population. The Lions describe the early risers, and Wolves roughly equate to the evening types. Recently, a fourth chronotype has been proposed: the Dolphin, whose responses to the questionnaire suggest that they switch between modes. Whether you're a Bear, Lion, Wolf, or Dolphin, understanding your chronotype can be a game-changer in optimising your daily routine. So, what’s your chronotype—and how can you start working with your body’s natural rhythms to unlock your full potential? A sleep study ? The MEQ ? Maybe keeping a tracker. Written by B. Esfandyare Related articles: Circadian rhythms and nutrition / Does insomnia run in families? REFERENCES Emens JS, Yuhas K, Rough J, Kochar N, Peters D, Lewy AJ. Phase Angle of Entrainment in Morning‐ and Evening‐Types under Naturalistic Conditions. Chronobiology International. 2009 Jan;26(3):474–93. Lee, J.H., Kim, I.S., Kim, S.J., Wang, W. and Duffy, J.F. (2011). Change in Individual Chronotype Over a Lifetime: A Retrospective Study. Sleep Medicine Research , 2(2), pp.48–53. doi: https://doi.org/10.17241/smr.2011.2.2.48 . Ujma, P.P. and Kirkegaard, E.O.W. (2021). The overlapping geography of cognitive ability and chronotype. PsyCh Journal , 10(5), pp.834–846. doi: https://doi.org/10.1002/pchj.477 . Shearman LP, Jin X, Lee C, Reppert SM, Weaver DR. Targeted Disruption of the mPer3 Gene: Subtle Effects on Circadian Clock Function. Molecular and Cellular Biology. 2000 Sep 1;20(17):6269–75. Viola AU, Archer SN, James Lynette M, Groeger JA, Lo JCY, Skene DJ, et al. PER3 Polymorphism Predicts Sleep Structure and Waking Performance. Current Biology. 2007 Apr;17(7):613–8. Project Gallery

bottom of page