top of page

Search Index

354 results found

  • Obesity in children | Scientia News

    Obesity is one of the most common problems among many in all age groups. As per world health organisation obesity or overweight defined as abnormal or excessive fat accumulation that may cause impair health. Obesity measured by BMI (Body mass index), normal BMI for children is  range Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Childhood obesity Last updated: 18/11/24 Published: 25/03/23 Obesity is one of the most common problems among many in all age groups. As per the World Health Organisation, obesity or overweight is defined as abnormal or excessive fat accumulation that may cause impaired health. Obesity is measured by Body Mass Index (BMI). The normal BMI for children ranges from 13.53 to 20.08. Children are the most vulnerable age group for becoming overweight. Early prevention reduces the overall burden of health care system globally. Obesity causes: Obesity mainly results from imbalance between energy intake and utilisation of calorie intake. There are several reasons for becoming overweight. Five main causes for overweight are- Genetic factors Food quality and quantity Parental belief Sedentary lifestyle Environmental resource Symptoms of childhood obesity: Shortness of breath while physical activity Difficulty in breathing while sleeping. Easily fatigue. Gastric problems such as gastroesophageal reflux disease Fat deposits in various body parts such as breast, abdomen and thigh area Prevalence The prevalence of overweight children is increasing every year. In England, in the year 2019/2020, the prevalence of overweight increased rapidly. The National Child Measurement Program measure shows that in Reception (4-5 years old), the obesity rate was 9.9% and continued to increase to 21% in year 6. Childhood obesity is tackled early so complications can be managed before it worsens. There are many ways to prevent childhood obesity. Prevention The National Institute for Health and Care Excellence guidance currently recommends lifestyle intervention as the main treatment for prevention of childhood obesity. Diet management and physical activity are the main areas to focus on for obesity prevention. Dietary modification includes limited use of refined grains and sweets, potatoes, red meat, processed meat, sugary drinks, and alternatively increase intake of fresh fruits and vegetables, whole grain and adopt more healthier food options, instead of fatty and junk food. On top of that, add physical activity in daily routine. It is one of the key factors for reduction of obesity. Another way for communities to tackle obesity is to take part in government programmes such as Healthier You and NHS Digital weight management programme, which are helpful for handling obesity. Written by Chhaya Dhedhi Related articles: Depression in children / Childhood stunting in developing nations / Nature vs nurture in childhood intelligence

  • International Baccalaureate (IB) resources | Scientia News

    Common questions and answers- along with helpful resources- regarding the International Baccalaureate programme. International Baccalaureate (IB) Are you a student currently studying the IB Diploma Programme (IBDP), or about to commence it? You're in the right place! You may also like: Personal statements , A-level resources , University prep and Extra resources What is the IB? Jump to resources The IB is an International Academic Program which is another alternative to A levels. This is a highly academic program with final exams that prepare students for university and careers. You select one subject from each of the five categories, which include two languages, social sciences, experimental sciences, and mathematics. You must also choose either an arts subject from the sixth group or another from the first to fifth groups. How is the IB graded? Subjects might differ from schools and countries but these are the ideal subjects given in the IB. IB is graded through a point system (7 being the highest and 1 being the lowest) and the highest mark you can achieve in total is 45. For the 6 subjects you study you can achieve a maximum of 42 points. Theory of Knowledge and Extended Essay are combined to gain 3 extra bonus points. These 2 subjects will be marked from A (highest) to E (lowest) and then will be converted to points. What are the benefits of studying the IB? Even though there are a lot of subjects, this programme is great for students to gain new skills and be an all- rounder. IB also helps students to have a better idea of how work will be in university especially with coursework and that is one of the main things you will work on when studying IB- it is known as Internal Asssessment (IA). Doing CAS is also a great opportunity for students to be independent and find activities/ services to do outside of school to build up their portfolio on CAS as well as their CV/ personal statement when applying for university. The marking matrix used in the IB. How do universities use the IB to select students? All universities around the world accept the IB as a qualification gained in secondary school. Depending on the degree you are applying to, universities mainly focus on your Higher Level (HL) subjects. Each university has their own requirements for students applying to study a course at their institution. The most common way is considering your total point score out of 45, and your total point score of your HL subjects. Another way is asking applicants to achieve a certain grade in a particular grade at HL or at standard level (SL). If you complete the IB programme well enough, universities may prefer you over the other qualifications e.g. A-levels. Benefits of completing the IB programme. Resources for revision Websites to help Official IB website and the IB Bookshop Maths IA ideas Maths Analysis and Approaches SL and HL practice questions Maths resources in general / Worksheets and more Biology- BioNinja Biology, Chemistry, Physics, Maths- Revision Village / Save My Exams Biology, Chemistry, Maths- IB Dead IB Psychology IB Computer Science resources YouTube channels to help Chemistry- Richard Thornley Physics- Chris Doner Textbooks for both HL and SL Bio: Oxford IB Diploma Programme: Biology Course Biology for the IB Diploma by Brenda Walpole Chem: Chemistry Oxford IB Diploma Programme: Chemistry Course Chemistry for the IB Diploma Coursebook with Cambridge Elevate Enhanced Edition b y Steve Owen Physics: Physics Oxford IB Diploma Programme: Physics Course Physics for the IB Diploma with Cambridge by T. A. Tsokos Maths: Maths Oxford IB Diploma Programme- IB Mathematics: analysis and approaches / applications and interpretations

  • CRISPR-Cas9 discovery | Scientia News

    Jennifer Doudna and Emmanuelle Charpentier were jointly awarded the Nobel Prize in Chemistry in the year 2020, for their major contributions in reducing the number of components in the CRISPR-Cas9 system. An outline of their discovery CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats) can be used, by removing, adding, or altering particular DNA sequences and may edit specific parts of the genome. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Who were the winners of the Nobel Prize in Chemistry in 2020? Last updated: 07/11/24 Published: 02/02/23 Jennifer Doudna and Emmanuelle Charpentier were jointly awarded the Nobel Prize in Chemistry in the year 2020, for their major contributions in reducing the number of components in the CRISPR-Cas9 system. An outline of their discovery Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) can be used, by removing, adding, or altering particular DNA sequences and may edit specific parts of the genome. A four-part mechanism called the Cas9 endonuclease consists of two small molecules. By combining these two RNA molecules into a "single-guide RNA," by Jennifer Doudna and Emmanuelle Charpentier, the Cas9 endonuclease was redesigned into a more manageable two-component system that could locate and cut the DNA target defined by the guide RNA- CRISPR/Cas9 ‘genetic scissors’. It can silence or activate genes as well as add or remove others. The Nobel Prize in Chemistry was awarded in 2020 in recognition of this contribution. Some advantages of this technology: quick easy adaptable innovative, unique Disadvantages: distribution challenges extremely conservative ethical issues some off-target effects some negative outcomes Significance of this discovery This discovery is important in preventing disease and is such a revolutionary tool. It does not just help humans but also animals, plants and even bacteria. CRISPR has already been applied to various disorders, such as cancer and infectious diseases. By making it possible to make changes to the target cells' genomes, which were previously challenging to do, the procedure offers a new perspective on biological treatment and demonstrates how important this tool is. But since this technology is still recent, scientists must develop straightforward processes and techniques to monitor and test its progress, performance, and outcomes. Jennifer Doudna Hailing from Washington DC., USA, Jennifer Doudna was born in 1964. As a professor of biochemistry, biophysics, and structural biology, Doudna’s main research focus is on RNA, and its variety of structures and functions. It was her research lab’s work that led to the discovery of CRISPR-Cas9 as an extraordinarily powerful tool to cut and edit the human genome to treat disease. This remarkable discovery was a decade ago in 2012, when Doudna and others were able to copy a bacterial system to create molecular scissors, in order to edit the genetic code. In October 2020, at the time of her being awarded the Nobel Prize in Chemistry, Doudna was affiliated to the University of Berkeley, in California. Emmanuelle Charpentier Coming from a French background, Emmanuelle Charpentier is a professor and researcher in microbiology, genetics, and biochemistry. Born in 1968, researcher Charpentier has made tremendous progress in her respective field. From being the director at the Berlin Max Planck Institute for Infection Biology in 2015, to founding her own independent research institute- the Max Planck Unit for the Science of Pathogens in the year 2018, and of course being jointly awarded the Nobel Prize in Chemistry in 2020; it is true that Charpentier has added new, valuable research in her work and has come a long way in her career. Why the CRISPR/ Cas9 system fascinates us We find CRISPR fascinating because as biological science students, we know this tool is vital for genetics and can help cure present incurable diseases such as sickle cell disease as well as cancer, showing what a revolutionary tool this is. It does not just help humans but also animals, plants and even bacteria showing how broad biology is and different fields can be linked to one another. Researchers are constantly coming up with new ways to use CRISPR-Cas9 gene editing technology to solve problems in the real world, such as epigenome editing, new cell and gene therapies, infectious disease research, and the conservation of endangered species. The advantages of this technology are that it is quick, easy and adaptable, but its disadvantages include distribution challenges, extremely conservative ethical issues, some off-target effects, and some negative outcomes. By making it possible to make changes to the target cells' genomes, which were previously challenging to do, the procedure offers a new perspective on biological treatment and demonstrates how important this tool is. Written by Jeevana Thavarajah, and Manisha Halkhoree Scientia News founder and managing director Related articles: Female Nobel prize winners in Chemistry and in Physics

  • Why is there a need for cardiac regeneration? | Scientia News

    Restoring cardiac tissue and reducing heart failure Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Why is there a need for cardiac regeneration? Last updated: 13/03/25, 11:37 Published: 06/03/25, 08:00 Restoring cardiac tissue and reducing heart failure Cardiovascular disease (CVD) remains a predominant cause of morbidity and mortality on a global scale. Among its various manifestations, heart failure (HF) stands out as a significant public health concern, with a prevalence exceeding 23 million individuals worldwide. Heart failure, especially after a heart attack (myocardial infarction) or ischemic heart disease, is a major challenge. The five-year survival rate is less than 50%. In these patients, functional cardiomyocytes are substantially lost (cardiomyocytes refer to cardiac muscle cells). The remaining cardiomyocytes often attempt to compensate for this loss; however, this compensatory mechanism can lead to scar tissue formation, subsequently compromising the overall functionality of the cardiac muscle. Despite numerous advancements in medical science and therapeutic interventions, restoring lost cardiomyocytes in the adult mammalian heart remains a significant obstacle due to its poor regenerative capacity. Consequently, there exists an urgent need for novel therapeutic approaches. Cardiac regeneration has emerged as a promising field of research focused on restoring cardiac tissue and reducing heart failure, offering hope for improved clinical outcomes in affected patients. Approaches for cardiac regeneration Cardiac regeneration has emerged as a pivotal area of research, and various innovative strategies, including stem cell therapies and gene therapy, are being explored. Stem cell therapies: Stem cell therapies utilise the ability of stem cells to differentiate into cardiomyocytes or release factors that promote tissue repair. Preclinical studies involving animal models and early-phase clinical trials have demonstrated that stem cell interventions can enhance cardiac function. However, significant challenges remain concerning the efficacy and safety of these therapies in human subjects, necessitating further investigation. Gene therapy: Gene therapy delivers specific genes that directly support cell proliferation, differentiation, and survival to damaged cardiac tissue. Introducing these genes can activate specific intracellular signalling pathways, resulting in the replication and maturation of cardiac muscle cells. Ultimately, this strategy aims to restore normal heart function and improve cardiac health. Benefits of cardiac regeneration Cardiac regeneration has the potential to significantly enhance survival rates and improve the quality of life for patients with heart conditions. Compared to heart transplantation, cardiac regeneration offers a less invasive alternative with fewer complications related to immune rejection and lifelong immunosuppressive therapy. Some of the potential benefits of cardiac regeneration are: Replacing the scar formation and improving heart function Reduce the dependency on medications Alternative to heart transplantation Reducing the healthcare costs Challenges to cardiac regeneration Cardiac regeneration remains a complex field marked by ethical considerations and scientific challenges that require thorough exploration. Stem cell therapy limitations include low engraftment rates, potential tumorigenesis, and difficulty effectively integrating host cardiac tissue. Additionally, immune rejection poses a substantial risk, affecting safety and efficacy. Beyond biological hurdles, the high cost of research, treatment development, and patient care presents a significant challenge to widespread adoption. Regulatory approval processes add another layer of complexity, as therapies must meet stringent safety and efficacy standards before clinical use. Furthermore, scalability remains an issue, as translating experimental techniques into large-scale, cost-effective treatments is a major obstacle in making cardiac regeneration accessible to a broader population. Moreover, it is imperative to deepen our understanding of the roles played by non-cardiomyocyte cell types such as endothelial cells, fibroblasts, and immune cells in cardiac regeneration. Conclusion Cardiac regeneration is a ray of hope for heart patients, significantly enhancing their chances of survival and quality of life. Therefore, cardiac regeneration demands thorough exploration, as it has the potential to transform the treatment and management of cardiovascular disease. Written by Prabha Rana Related article: Hypertension REFERENCES Baccouche, B. M., Elde, S., Wang, H., & Woo, Y. J. (2024). Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible. Npj Regenerative Medicine, 9(1), 18. https://doi.org/10.1038/s41536-024-00357-z Pezhouman, A., Nguyen, N. B., Kay, M., Kanjilal, B., Noshadi, I., & Ardehali, R. (2023). Cardiac regeneration - Past advancements, current challenges, and future directions. Journal of Molecular and Cellular Cardiology, 182, 75–85. https://doi.org/10.1016/j.yjmcc.2023.07.009 Sacco, A. M., Castaldo, C., di Meglio, F. di, Nurzynska, D., Palermi, S., Spera, R., Gnasso, R., Zinno, G., Romano, V., & Belviso, I. (2023). The Long and Winding Road to Cardiac Regeneration. Applied Sciences, 13(16), 9432. https://doi.org/10.3390/app13169432 van der Pol, A., & Bouten, C. V. C. (2021). A Brief History in Cardiac Regeneration, and How the Extra Cellular Matrix May Turn the Tide. Frontiers in Cardiovascular Medicine, 8. https://doi.org/10.3389/fcvm.2021.682342 Wang, J., An, M., Haubner, B. J., & Penninger, J. M. (2023). Cardiac regeneration: Options for repairing the injured heart. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.981982 Project Gallery

  • The dopamine connection | Scientia News

    How your gut influences your mood and behaviour Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The dopamine connection 11/07/25, 10:02 Last updated: Published: 25/03/24, 12:01 How your gut influences your mood and behaviour Introduction to dopamine Dopamine is a neurotransmitter derived from an amino acid called phenylalanine, which must be obtained through the diet, through foods such as fish, meat, dairy and more. Dopamine is produced and released by dopaminergic neurons in the central nervous system and can be found in different brain regions. The neurotransmitter acts via two mechanisms: wiring transmission and volume transmission. In wiring transmission, dopamine is released to the synaptic cleft and acts on postsynaptic dopamine receptors. In volume transmission, extracellular dopamine arrives at neurons other than postsynaptic ones. Through methods such as diffusion, dopamine then reaches receptors in other neurons that are not in direct contact with the cell that has released the neurotransmitter. In both mechanisms, dopamine binds to the receptors, transmitting signals between neurons and affecting mood and behaviour. The link between dopamine and gut health Dopamine has been known to result in positive emotions, including pleasure, satisfaction and motivation, which can be influenced by gut health. Therefore, what you eat and other factors, including motivation, could impact your mood and behaviour. This was proven by a study (Hamamah et al., 2022), which looked at the bidirectional gut-brain connection. The study found that gut microbiota was important in maintaining the concentrations of dopamine via the gut-brain connection, also known as the gut microbiota-brain axis or vagal gut-to-brain axis. This is the communication pathway between the gut microbiota and the brain facilitated by the vagus nerve, and it is important in the neuronal reward pathway, which regulates motivational and emotional states. Activating the vagal gut-to-brain axis, which leads to dopamine release, suggests that modulating dopamine levels could be a potential treatment approach for dopamine-related disorders. Some examples of gut microbiota include Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus , and they can affect dopamine by modulating dopaminergic activity. These gut microbiota are able to produce neurotransmitters, including dopamine, and their functions and bioavailability in the central nervous system and periphery are influenced by the gut-brain axis. Gut dysbiosis is the disturbance of the healthy intestinal flora, and it can lead to dopamine-related disorders, including Parkinson's disease, ADHD, depression, anxiety, and autism. Gut microbes that produce butyrate, a short-chain fatty acid, positively impact dopamine and contribute to reducing symptoms and effects seen in neurodegenerative disorders. Dopamine as a treatment It is important to understand the link between dopamine and gut health, as this could provide information about new therapeutic targets and improve current methods that have been used to prevent and restore deficiencies in dopamine function in different disorders. Most cells in the immune system contain dopamine receptors, allowing processes such as antigen presentation, T-cell activation, and inflammation to be regulated. Further research into this could open up a new possibility for dopamine to be used as a medication to treat diseases by changing the activity of dopamine receptors. Therefore, dopamine is important in various physiological processes, both in the central nervous and immune systems. For example, studies have shown that schizophrenia can be treated with antipsychotic medications which target dopamine neurotransmission. In addition, schizophrenia has also been treated by targeting the dysregulation (decreasing the amount) of dopamine transmission. Studies have shown promising results regarding dopamine being used as a form of treatment. Nevertheless, further research is needed to understand the interactions between dopamine, motivation and gut health and explore how this knowledge can be used to create medications to treat conditions. Conclusion The bidirectional gut-brain connection shows the importance of gut microbiota in controlling dopamine levels. This connection influences mood and behaviour but also has the potential to lead to new and innovative dopamine-targeted treatments being developed (for conditions including dopamine-related disorders). For example, scientists could target and manipulate dopamine receptors in the immune system to regulate the above mentioned processes: antigen presentation, T-cell activation, and inflammation. While current research has shown some promising results, further investigations are needed to better comprehend the connection between gut health and dopamine levels. Nevertheless, through consistent studies, scientists can gain a deeper understanding of this mechanism to see how changes in gut microbiota could affect dopamine regulation and influence mood and behaviour. Written by Naoshin Haque Related articles: the gut microbiome / Crohn's disease / Microbes in charge Project Gallery

  • Complex disease I- schizophrenia | Scientia News

    An introductory and comprehensive review of complex diseases and their environmental influences. Using schizophrenia as an example, we are interested in exploring one of the biggest questions that underlie complex diseases. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The environment on complex diseases: schizophrenia Last updated: 18/11/24 Published: 08/05/23 An introductory and comprehensive review of complex diseases and their environmental influences. Using schizophrenia as an example, we are interested in exploring one of the biggest questions that underlie complex diseases. Introduction: Not Exactly a Yes or No Question Many things in science revolve around questions. It is remarkable to find the number of questions left for scientists to answer or those that will remain unanswered. Indeed, one of the most daunting tasks for any scientist would be to see through every detail of a piece of information, even if everyone has seen it, but with different sets of lenses and asking different sets of questions. After all, “why did the apple fall from its tree?”. However, asking questions is one thing. Finding answers and, more importantly, the evidence or proof that supports them does not always yield conclusive results. Nevertheless, perhaps some findings may shine a new light on a previously unanswered question. We can categorise the study of genetics into two questions: “What happens if everything goes well?” and “What happens if it goes wrong?”. Whilst there are virtually limitless potential causes of any genetic disease, most genetic diseases are known to be heritable. A mutation in one gene that causes a disease can be inherited from the parents to their offspring. Often, genetic diseases are associated with a fault in one gene, known as a single-gene disorder, with notorious names including Huntington’s disease, cystic fibrosis, sickle cell anaemia, and familial hypercholesterolaemia. These diseases have different mechanisms, and the causes are also diverse. But all these diseases have one thing in common: they are all caused by a mutation or fault in one gene, and inheriting any specific genes may lead to disease development. In other words, “either you have it, or you do not”. The role of DNA and mutations in complex diseases. Image/ craiyon.com Multifactorial or complex diseases are a classification geneticists give to diseases caused by factors, faults or mutations in more than one gene. In other words, a polygenic disease. As a result, the research, diagnosis, and identification of complex diseases may not always produce a clear “black-and-white” conclusion. Furthermore, complex diseases make up most non-infectious diseases known. The diseases associated with leading causes of mortality are, in their respective ways, complex. Household names include heart diseases, Alzheimer’s and dementia, cancer, diabetes, and stroke. All of these diseases may employ many mechanisms of action, involving multiple risk factors instead of direct cause and effect, using environmental and genetic interactions or factors to their advantage, and in contrast to single-gene disorders, do not always follow clear or specific patterns of inheritance and always involve more than one problematic genes before the complete symptoms manifest. For these reasons, complex diseases are infamously more common and even more challenging to study and treat than many other non-infectious diseases. No longer the easy “yes or no” question. The Complex Disease Conundrum: Schizophrenia Here we look at the case of a particularly infamous and, arguably, notorious complex disease, schizophrenia (SCZ). SCZ is a severely debilitating and chronic neurodevelopmental disorder that affects around 1% of the world’s population. Like many other complex diseases, SCZ is highly polygenic. The NHS characterise SCZ as a “disease that tends to run in families, but no single gene is known to be directly responsible…having these genes does not necessarily mean one will develop SCZ”. As previously mentioned, many intricate factors are at play behind complex diseases. In contrast, there is neither a single known cause for SCZ nor a cure. Additionally, despite its discovery a century ago, SCZ is arguably not well understood, giving a clue to the sophisticated mechanisms that underlie SCZ. To further illustrate how such complexities may pose a challenge to future medical treatments, we shall consider a conundrum that diseases like SCZ may impose. The highly elaborate nature of complex diseases means that it is impossible to predict disease outcomes or inheritance with absolute certainty nor rule out potential specific causes of diseases. One of the most crucial aspects of research on complex diseases is their genetic architecture, just as a house is arguably only as good as its blueprint. Therefore, a fundamental understanding of the genes behind diseases can lead to a better knowledge of diseases’ pathogenesis, epidemiology, and potential drug target, and hopefully, one day bridge our current healthcare with predictive and personalised medicine. However, as mentioned by the NHS, one of the intricacies behind SCZ is that possessing variants of diseased genes does not translate to certainty in disease development or symptom manifestation. Our conundrum, and perhaps the biggest question on complex diseases like SCZ is: “Why, even when an individual possesses characteristic genes of a complex disease, they may not necessarily exhibit symptoms or have the disease?”. The enigma surrounding complex diseases lies in the elegant interactions between our genes, the blueprint of life, and “everything else”. Understanding the interplay of factors behind complex diseases may finally explain many of the intricacies behind diseases like SCZ. Genes and Environment: an Obvious Interaction? The gene-environment important implications on complex disease development were demonstrated using twin studies. A twin study, as its name suggests, is the study of twins by their similarities, differences, and many other traits that twins may exhibit to provide clues to the influences of genetic and external factors. Monozygotic (MZ) twins each share the same genome and, therefore, are genetically identical. Therefore, if one twin shows a phenotype, the other twin would theoretically also have said genes and should exhibit the corresponding trait. Experimentally, we calculate the concordance rate, which means the probability of both twins expressing a phenotype or characteristic, given that one twin has said characteristic. Furthermore, the heritability score may be mathematically approximated using MZ concordance and the concordance between dizygotic twins (twins that share around half a genome). These studies are and have been particularly useful in demonstrating the exact implications genetic factors have on phenotypes and how the expression of traits may have been influenced by confounding factors. In the case of SCZ, scientists have seen, over decades, a relatively low concordance rate but high heritability score. A recent study (published in 2018) through the Danish SCZ research cohort involved the analysis of around 31,500 twins born between the years 1951 and 2000, where researchers reported a concordance rate of 33% and estimated heritability score of 79%, with other older studies reporting a concordance rate up to and around 50%. The percentages suggest that SCZ is likely to be passed down. In other words, a genetically identical twin only has approximately 1 in 2 risks of also developing symptoms of SCZ if its opposite twin also displays SCZ. The scientists concluded that although genetic predisposition significantly affects one’s susceptibility or vulnerability against SCZ, it is not the single cause of SCZ. Demographically, there have been studies that directly link environmental risks to SCZ. Some risk factors, such as famines and malnutrition, are more evident than others. However, some studies also associate higher SCZ risk among highly industrialised countries and first or second-generation migrants. For instance, few studies point out an increased risk of SCZ within ethnic minorities and Afro-Caribbean immigrants in the United Kingdom. Hypotheses that may explain such data include stress during migration, potential maternal malnutrition, and even exposure to diseases. With this example, hopefully, we all may appreciate how the aetiology of SCZ and other complex diseases are confounded by environmental factors. In addition, how such factors may profoundly influence an individual’s genome. SCZ is a clear example of how genetic predisposition, the presence of essential gene variants characteristic of a disease, may act as a blueprint to a terrible disease waiting to be “built” by certain factors as if they promote such development. It is remarkable how genetic elements and their interactions with many other factors may contribute almost collectively to disease pathogenesis. We can reflect this to a famous quote amongst clinical geneticists: “genetics loads the gun, and environment pulls the trigger.” Carrying high-risk genes may increase the susceptibility to a complex disease, and an environment that promotes such disease may tip the balance in favour of the disease. However, finding and understanding the “blueprints” of SCZ, what executes this “blueprint”, and how it works is still an area of ongoing research. Furthermore, how the interplay between genetics and external factors can lead to profound effects like disease outcomes is still a relatively new subject. The Epigenome: the Environment’s Playground To review, it is clear that genes are crucial in complex disease aetiology. In the case of SCZ, high-risk genes and variances are highly attributed to disease onset and pathogenesis. However, we also see with twin studies that genetics alone cannot explain the high degree of differences between twins, particularly when referring to SCZ concordance between identical twins. In other words, external factors are at play, influencing one’s susceptibility and predisposition to SCZ. These differences can be explained by the effects epigenetics have on our genome. Epigenetic mechanisms regulate gene expression by modifying the genome. In short, on top of the DNA double strands, the genome consists of additional proteins, factors, and even chemical compounds that all aid the genetic functions our body heavily relies on. The key to epigenetics lies in these external factors’ ability to regulate gene expression, where some factors may promote gene expression whilst others may prevent it. Epigenetic changes alter gene functions as they can turn gene expression “on” and “off”. Furthermore, many researchers have also shown how epigenetic changes may accumulate and be inherited somatically with cell division and even passed down through generations. Therefore, epigenetic changes may occur without the need to change any of the DNA codes, yet, they may cause a profound effect by controlling gene expression throughout many levels of the living system. These underlying mechanisms are crucial for the environment’s effect on complex diseases. Some external factors may directly cause variances or even damage to the genome (e.g. UV, ionising radiation), and other sources may indirectly change gene expression by manipulating epigenetic changes. The exact molecular genetics behind epigenetic mechanisms are elaborate. However, we can generally find three common epigenetic mechanisms: DNA Methylation, Histone Modification, and Non-coding RNA. Although each method works differently, they achieve a common goal of promoting or silencing gene expression. All of these are done by the many molecular components of epigenetics, altering the genome without editing the gene sequence. We refer to the epigenome, which translates to “above the genome”, the genome itself and all the epigenetic modifiers that regulates gene expression on many levels. Environmental factors and exposure may influence epigenetic mechanisms, affecting gene expression in the cell or throughout the body, sometimes permanently. Therefore, it is clear how the epigenome may change throughout life as different individuals are exposed to numerous environmental factors. Furthermore, each individual may also have a unique epigenome. Depending on which tissues or cells are affected by these mechanisms, tissues or cells may even have a distinct epigenome, unlike the genome, which is theoretically identical in all cells. One example of this is the potential effects of DNA methylation on schizophrenia epidemiology. DNA methylation can silence genes via the enzymes DNA methyltransferases (DNMT), a family of enzymes capable of catalysing the addition of methyl groups directly into the DNA. The DNMT enzymes may methylate specific nucleotides on the gene, which usually would silence said gene. Many researchers have found that the dysregulation of DNA methylation may increase the risk towards the aetiology of numerous early onset neuro-developmental disorders. However, SCZ later-onset development also points towards the influence of environmental risk factors that target DNA methylation mechanisms. Studies show links between famines and SCZ increased prevalence, as the DNMT enzymes heavily rely on nutrients to supply essential amino acids. Malnutrition is thought to play a considerable role in DNA methylation changes and, therefore, the risk of SCZ. Small Piece of a Changing Puzzle Hopefully, we can see a bigger picture of the highly intricate foundation beneath complex diseases. Bear in mind that SCZ is only one of many complex diseases known. SCZ is ultimately not a pristine and impartial model to study complex disorders. For instance, concordance rates of complex diseases change depending on their genetic background. In addition, they may involve different mutations, variance, or dysregulation of differing pathways and epigenetic mechanisms. After all, complex diseases are complex. Finally, this article aimed to give a rundown of the epigenetics behind complex diseases like SCZ. However, it is only a snapshot compared to the larger world of the epigenome. Furthermore, some questions remain unanswered: the genetic background and architecture of complex diseases, and ways to study, diagnose, and treat complex diseases. This Scientia article is one of the articles in Scientia on the theme of complex disease science and genetics. Hopefully, this introductory article is an insight and can be used to reflect upon, especially when tackling more complicated subjects of complex diseases and precision medicine. Written by Stephanus Steven Related articles: Schizophrenia, Inflammation, and Accelerated Ageing / An Introduction to Epigenetics

  • Can a human brain be linked to a computer? | Scientia News

    When we think of bacteria, we tend to focus on their pathogenicity and ability to cause diseases such as tuberculosis, which infects around one-quarter of the world’s population. However, whilst bacteria do have the potential to become parasitic, if the trillions of bacterial cells that make up the human microbiome ceased to exist, human health would experience a rapid decline. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Why bacteria are essential for human survival Last updated: 13/11/24 Published: 13/04/23 When we think of bacteria, we tend to focus on their pathogenicity and ability to cause diseases such as tuberculosis, which infects around one-quarter of the world’s population. However, whilst bacteria do have the potential to become parasitic, if the trillions of bacterial cells that make up the human microbiome ceased to exist, human health would experience a rapid decline. One reason for this is due to the critical role bacteria play in inducing the immune system against pathogenic threats. Upon viral infection, the interferon (IFN) defence system is initiated where the synthesis of antiviral cytokines is upregulated. Evidence suggests bacteria in the gut are capable of modulating the IFN system. They work by inducing macrophages and plasmacytoid dendritic cells to express type 1 IFN, which in turn primes natural killer cells and prepares cytotoxic CD8+ T cells for action. Erttmann et al (2022) demonstrate that a depletion of the gut microbiota diminishes the cell signalling pathways modulated by these commensal bacteria. This causes a reduction in type 1 IFN production, and thus an impairment in the activation of NK and CD8+ T cells. As a result, the body becomes more susceptible to attack by viral infections and less able to defend itself. This highlights just how vital the role bacteria in our microbiome play in providing us with innate immunity against viral pathogens and protecting our health. This also brings attention to our use of antibiotics, and the potential negative effects they may have on the commensal bacteria residing in our body. Erttmann et al (2022) further showed that mice treated with a variety of antibiotics exhibited a major reduction in gut microbiota diversity, thus severely comprising their ability to fight off viral infections. Research like this is important in informing doctors to be sensible in their administration of antibiotics, as well as informing patients to not self-medicate and unnecessarily ingest antibiotics. Ultimately, the commensal bacteria living in our bodies play essential roles in protecting human health, and it is, therefore, vital we take the necessary steps to also protect these remarkable microorganisms in return. Written by Bisma Butt Related article: The rising threat of antibiotic resistance REFERENCES Erttmann, S.F., Swacha, P., Aung, K.M., Brindefalk, B., Jiang, H., Härtlova, A., Uhlin, B.E., Wai, S.N. and Gekara, N.O., 2022. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity, 55(5), pp.847-861. Ganal, S.C., Sanos, S.L., Kallfass, C., Oberle, K., Johner, C., Kirschning, C., Lienenklaus, S., Weiss, S., Staeheli, P., Aichele, P. and Diefenbach, A., 2012. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity, 37(1), pp.171-186.

  • The Survival Secrets of the Arctic Springtail | Scientia News

    Antifreeze proteins and frozen foods Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The Survival Secrets of the Arctic Springtail 04/07/25, 12:59 Last updated: Published: 21/09/24, 16:09 Antifreeze proteins and frozen foods Introduction Approximately 450 million years ago, during the Ordovician period, the Earth was characterised by a hot and humid globe. The sea was teeming with life, with early squids, eel-like fish, and sea worms hunting smaller animals. However, there was no sign of movement above ground as the animals had not yet crawled ashore. This period of warmth created ideal living conditions for wildlife, but it was about to change dramatically. Shortly after, the land masses began to freeze, and an ice cap started to spread. The once warm and accommodating waters turned cold and inhospitable, leading to the second-worst mass extinction in the history of the planet. Many species succumbed to the harsh conditions, but one animal survived - the springtail. The springtail, a small insect-like animal, had developed a special strategy to combat the cold. Its cells started producing proteins that could protect them from freezing. This discovery challenges the previous belief that animals did not develop antifreeze proteins until much later. Research from Aarhus University has shown that the springtail might have been the first animal to develop such proteins. Applications in the Food Industry Since then, scientists have found antifreeze proteins in various animals, plants, and microorganisms. These proteins have also found applications in different industries. One of the industries utilising antifreeze proteins is the food industry, especially in producing frozen foods. Frozen foods often suffer from changes in taste and texture due to the formation of ice crystals. However, by incorporating antifreeze proteins, these undesirable effects can be prevented. Industrial yeast cell cultures have been engineered to produce antifreeze proteins derived from fish genes. These proteins can then be added to different foods, including ice cream, to improve texture and prevent the formation of ice crystals. Exploring Arctic Fish Aside from their contribution to the food industry, springtails have also fascinated scientists due to their ability to survive in extremely cold regions. The discovery of antifreeze proteins explained how arctic fish could swim in icy seawater. The proteins prevent ice from forming in the cells and blood of the fish, allowing them to survive in freezing conditions. Martin Holmstrup, a researcher at Aarhus University, oversees colonies of springtails in his laboratory. These small animals require minimal space and can be easily maintained in Petri dishes with a base of moist plaster and a feed of dry yeast. Researchers have determined that springtails developed these proteins long before other animals by studying the DNA sequences responsible for building antifreeze proteins. The discovery of antifreeze proteins in springtails opens up possibilities for various applications, including in the food industry. These proteins have been found to prevent ice crystal formation, which can affect the taste and texture of frozen foods. The genes responsible for their production have been copied into industrial yeast cell cultures to utilise these proteins. This allows the yeast to produce the antifreeze proteins, which can then be added to different foods. One example is the use of these proteins in ice cream, where they help create a delightful texture and allow the ice cream to be thawed and refrozen without compromising its quality. Conclusion The discovery of antifreeze proteins in springtails has revolutionised various industries, particularly the food industry. These proteins have been found to prevent ice crystal formation, improving the taste and texture of frozen foods. Incorporating antifreeze proteins derived from fish genes into yeast cell cultures can produce and add these proteins to different foods, such as ice cream, ensuring a delightful texture and the ability to thaw and refreeze without compromising quality. This remarkable adaptation of springtails has provided insight into their survival in extremely cold regions and opened up possibilities for further applications of antifreeze proteins in various fields. Written by Sara Maria Majernikova Related articles: p53 protein / Zinc finger proteins / Emperor penguins, kings of ice Project Gallery

  • Linking arginine and tumour growth: a breakthrough in cancer research | Scientia News

    Arginine, the key to metabolic reprogramming in liver cancer Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Linking arginine and tumour growth: a breakthrough in cancer research Last updated: 20/02/25, 15:29 Published: 27/02/25, 08:00 Arginine, the key to metabolic reprogramming in liver cancer Unpicking the secrets of tumour growth: arginine, the key to metabolic reprogramming in liver cancer. We will look at how unleashing the power of arginine and elevating levels of this amino acid drive metabolic reprogramming and fuel tumour growth. Introduction In recent years, the field of cancer research has made significant progress in unravelling the complexities of this devastating disease. Scientists at the University of Basel have made a groundbreaking discovery regarding the role of the amino acid arginine in promoting tumour growth. Their findings shed light on the mechanisms underlying metabolic reprogramming in cancer cells and present new avenues for improving liver cancer treatment. Elevated levels of arginine: a surprising revelation An intriguing aspect of the study conducted by the researchers is the observation that tumour cells accumulate high levels of arginine despite producing less or none of this amino acid. Through careful analysis of liver tumour samples from both mice and patients, the team discovered that the tumour cells achieve this accumulation by increasing the uptake of arginine and suppressing its consumption. The role of arginine in tumorigenicity Upon further investigation, the scientists at the University of Basel found that high concentrations of arginine bind to a specific factor, triggering metabolic reprogramming in the tumour cells. This reprogramming, in turn, promotes tumour growth by regulating the expression of metabolic genes. The tumour cells revert to an undifferentiated embryonic cell state, enabling them to divide indefinitely. Immune system escape: a beneficial effect for tumour cells Another fascinating discovery made by the researchers is the role of arginine in aiding tumour cells in evading the immune system. Immune cells rely on arginine to function properly. By depleting arginine in the tumour environment, the tumour cells can escape immune surveillance. This finding opens up new possibilities for targeted therapies. Targeting the arginine-binding factor: a novel approach Instead of depleting arginine levels overall, which can have unwanted side effects, the scientists propose targeting the specific arginine-binding factor responsible for promoting metabolic reprogramming. By inducing the degradation of this factor, the researchers were able to prevent metabolic reprogramming in liver tumours. This approach offers a promising alternative to liver cancer treatment. Metabolic changes as biomarkers for early cancer detection Furthermore, the study suggests that metabolic changes, such as increased arginine levels, may serve as biomarkers for the early detection of cancer. Early detection is crucial for successful cancer treatment and patient survival. This finding provides hope for the development of non-invasive diagnostic methods that can detect elevated arginine levels. By measuring arginine levels in patients, these diagnostic methods can potentially identify liver cancer at an early stage. By identifying the elevated levels of arginine in liver tumour cells, these diagnostic methods could potentially use metabolic changes, such as increased arginine levels, as biomarkers for detecting cancer. Therefore, this would be crucial for successful cancer treatment and patient survival, as early detection allows for prompt intervention and improved outcomes. Conclusion The discovery of the role of arginine in driving metabolic reprogramming and promoting tumour growth opens up new avenues for liver cancer treatment. Additionally, the elevated levels of arginine observed in liver cancer patients suggest the potential for using arginine as a biomarker for non-invasive cancer detection. Further research is needed to explore the full potential of arginine as a diagnostic marker and to develop targeted therapies that exploit the metabolic vulnerabilities of cancer cells. With continued advancements in our understanding of cancer metabolism and the role of arginine in tumour growth, further research is needed to explore the full potential of arginine as a diagnostic marker and to develop targeted therapies that exploit the metabolic vulnerabilities of cancer cells. By studying the specific arginine-binding factor and its role in promoting metabolic reprogramming, scientists may be able to develop new treatments that selectively target tumour cells while minimising harm to immune cells that rely on arginine. Additionally, investigating the metabolic changes associated with increased arginine levels may lead to new biomarker designs for early cancer detection, which is crucial for successful treatment and patient survival. Written by Sara Maria Majernikova Related articles: Immune signals and metastasis / Cancer research treatment / Prostatate cancer treatment REFERENCE MOSSMANN, D., MÜLLER, C., PARK, S., RYBACK, B., COLOMBI, M., RITTER, N., WEISSENBERGE, D., DAZERT, E., COTO-LLERENA, M., NUCIFORO, S., BLUKACZ, L., ERCAN, C., JIMENEZ, V., PISCUOGLIO, S., BOSCH, F., TERRACCIANO, L. M., SAUER, U., HEIM, M. H. & HALL, M. N. Arginine reprograms metabolism in liver cancer via RBM39. Cell . DOI: https://doi.org/10.1016/j.cell.2023.09.011 Project Gallery

  • Latent space transformations | Scientia News

    Their hidden power in AI and machine learning Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Latent space transformations 21/08/25, 15:53 Last updated: Published: 19/09/23, 16:42 Their hidden power in AI and machine learning Getting machines to understand the information we want to give it is quite the task. Especially, given the level of complexity of the information we give it. For example, when trying to process an image for classification algorithms, how does the algorithm recognise the paws of a dog or the curvature of a boat? We need to simplify the information for simpler processing and manipulation. Similar to how you would take summarised notes in a lecture instead of copying everything. While information is lost, the key features are kept. That is where the term “ latent space ” comes in. What are latent spaces? In the realm of mathematics, various types of spaces play crucial roles. One such space is the linear space, which encompasses the number line—a fundamental construct. Then there's Euclidean space, a broader category that encompasses 2D, 3D, and higher-dimensional spaces. However, as the number of dimensions increases, the mathematical intricacies become exceedingly complex, often pushing the limits of computational feasibility. In a latent space transformation, we essentially reduce the dimensions of the space in which the data exists and create an abstract representation of the key features in a lower dimension space. This has a host of benefits with the main one being a reduction in the compute power needed to process the data. It’s an example of data compression and a direct instance of dimension reduction with neither being new concepts. Example: auto-encoders Auto-encoders are a type of neural network. They consist of an encoder-to-decoder architecture (see image with caption). The transformation allows us to process and store the input data more efficiently. In addition, once trained, auto-encoders can sample data from the latent space to generate new data points also called data generation of a synthetic nature. Other applications of latent space Now that we can store our information more effectively for computers to understand, there are a host of applications for the technique you might want to be aware of: - Natural Language Processing: Latent space models have been used in natural language processing for tasks such as text classification, sentiment analysis, and machine translation. - Audio Processing: Latent space models have been used for music analysis, speech recognition, and audio processing. - Computer Vision: This we have partially discussed already. - Anomaly Detection: Latent space models can be used to recognise security failures in cybersecurity, or potentially fraud in the financial system. The applications of data reduction would be endless but those are just few applications in technology right now. Written by Temi Abbass Related articles: Markov chains / Evolution of AI / Study on brain metastasis Project Gallery

bottom of page