top of page

Search Index

314 results found

  • Neuroscience | Scientia News

    The secrets of the brain are secrets no longer; the field of neuroscience is rapidly expanding day by day. Read articles which discuss Parkinsonism, Huntington’s, degeneration, Alzheimer’s, and more. Neuroscience Articles The secrets of the brain are secrets no longer; the field of neuroscience is rapidly expanding day by day. Read articles which discuss Parkinsonism, Huntington’s, degeneration, Alzheimer’s, and more. You may also like: Biology , Immunology , Medicine Synaptic plasticity and London taxi drivers Synaptic plasticity and navigating our surroundings Stress and neurodegeneration And how the hormone cortisol plays a significant role Markers for Parkinsonism Exploring the role of TDP43 The wonders of the human brain A basic overview of brain function The brain-climate connection Can rising temperatures really affect our brains? Schizophrenia and accelerated ageing A complex medical phenotype Squid axons And how they were fundamental to discoveries in neuroscience Alzheimer's disease Its pathology and potential treatment Serial killers Their neurological basis Huntington's disease A rare, inherited, debilitating neurological disease Electricity in the body Luigi Galvani 's work PTSD and intrusive memories Article #1 in a series on Post Traumatic Stress Disorder and traumatic memories Mobility disorders Hypermobility spectrum disorders vs. Hypermobile Ehlers-Danlos Syndrome Brief neuroanatomy of autism Autism is a neurological and developmental disorder Oliver Sacks Who was this famous neuroscientist? A treatment for Huntington's disease Antisense oligonucleotide gene therapy PTSD and Tetris Article #2 in a series on Post Traumatic Stress Disorder and traumatic memories The dopamine connection The link between the brain and the digestive system Neuromyelitis optica (NMO)- Devic disease How is it different to Multiple Sclerosis? Article #8 in a series on Rare diseases. DFNB9 How was this form of deafness treated for the first time? Next

  • Liquid viscosity of castor oil | Scientia News

    This experiment was to find out the dynamic liquid viscosity of castor oil using stainless steel spheres of different radii at room temperature. Viscosity is a fluid’s resistance to flow and is formally defined as the ratio of the shearing stress to the shearing velocity. Viscosity arises due to the friction between the particles in a fluid, Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Summary of a liquid viscosity experiment Last updated: 07/11/24 Published: 26/01/23 For this experiment the liquid viscosity of castor oil was determined by dropping steel spherical balls into a tube of castor oil. By considering the forces acting on the ball whilst in the fluid, it was found that the viscosity was 1.37±0.01 Pa s with a percentage error of 71.25% to the literature value of castor oil’s viscosity. This experiment was to find out the dynamic liquid viscosity of castor oil using stainless steel spheres of different radii at room temperature. Viscosity is a fluid’s resistance to flow and is formally defined as the ratio of the shearing stress to the shearing velocity. Viscosity arises due to the friction between the particles in a fluid, because as the particles slide past each other there will be work done to slide over another particle which will produce heat. For this experiment, laminar flow was a valid model for the sphere falling down the castor oil tube, because the terminal velocity of the sphere is quite small and was reached quickly so there will not be any turbulence effects. Laminar flow is defined when liquids flow smoothly with layers that do not mix, however when the layers do mix then the flow is turbulent with different layers of the fluid swirling and mixing. As the sphere was travelling through the fluid there were three forces acting on it: drag force, weight and buoyancy. This investigation can be furthered as viscosity is vital in the field of medicine. There are certain drugs that are directly injected into patients so by knowing the optimal path for the drug to be administered, the drug can reach the patient’s vital areas as quickly as possible. Overall, this experiment was interesting as it led to numerous insights as to what may have affected the motion of a sphere falling down the tube of a viscous fluid, regardless of the simplicity of the experiment. Even though the uncertainties did not overlap with the literature value and the percentage differences were very high (in part due to calculations of the momentum), the experiment was not a failure due to the scientific insight it provided to make a carry out a more accurate experiment. Written by Siam Sama Related article: Pendulum and its relation to gravity experiment

  • Cancer biomarker and evolution | Scientia News

    When deciding on the treatment of diseases, experts must gain as much relevant information as they can about that disease, before acting on an informed decision. When cancer is suspected, it might be that the decision for future treatment and prognosis be heavily weighted on the results of biopsies Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Cancer biomarker and evolution Last updated: 27/02/25 Published: 30/01/23 Development of Novel Biomarkers by Studying Cancer Evolution What does cancer evolution mean to cancer diagnosis and prognosis? How does studying it provide a better outlook on cancer precision medicine? =================== When deciding on the treatment of diseases, experts must gain as much relevant information as they can about that disease, before acting on an informed decision. When cancer is suspected, it might be that the decision for future treatment and prognosis be heavily weighted on the results of biopsies. After all, this is the standard for diagnosing many cancers. It takes one needle to take “information” that is used to predict patients’ outcomes and their respective treatment options, in other words, a test that might just predict their future. Cancer is an evolving disease. There have been many studies over the decades that demonstrate solid cancers’ singular-cell origins. Other studies show how cancer may evolve from a single cell to a mass of cells through Darwinian or branched evolution. This also implies that many things that apply to other evolutionary phenomena also apply to evolving cancer lines: mutation, genetic drift, selection and their selection pressures. In the end, what originated from one cell turns out to be a tumour with a unique genetic landscape, made up of numerous cancer subpopulations, each with its own unique genotypic and phenotypic profile and each of these subpopulations of cancerous cells evolving on its own. This phenomenon is more commonly referred to as intratumor heterogeneity (ITH). What all of this means to biopsies, is that when a single-site needle biopsy is done, it might not give an accurate representation of the whole tumour. The tumour itself, depending on its stage of development may be quite uniform with minimal ITH, however, it may also, in the eyes of a geneticist, look like a mosaic with multiple different “populations” of cancerous cells. Say, for example, the biopsy is aimed to target certain biomarkers (e.g. single nucleotide polymorphisms (SNPs)) or other “landmarks” such as satellites, the biopsy will only view whatever the needle so happened to have sampled. In other words, sampling could have made it look like a mosaic is red, even though the majority of the mosaic at the time is blue, but it seemed red for we only found red during the biopsy. Additionally, this mosaic is changing, new colours may emerge just like new lines arise within the same tumour. ITH introduces what is known as sampling bias, where samples taken from biopsies only provide an overview or snapshot of the tumour at its state and only pick up on one piece of the actively evolving puzzle, potentially missing many details, in this case, biomarkers from other tumour subpopulations. To solve the issues of ITH, scientists participating in the TRACERx research consortium are employing unique methods to sample tumours in an approach to cancer evolution. The research involved using multiregional sampling and RNA sequencing to sample tumours from patients with non-small cell lung cancers (NSCLC) at different timestamps, i.e. during the various stages of cancer development, metastasis and relapse. By using this approach, the team managed to document better how cancer evolves and how the genomic landscape and tumour architecture changes over time. Furthermore, they succeeded in honing genes that are uniformly conserved and expressed throughout the tumour, even after the effects of ITH. The research looked over 20,000 expressed genes and found 1,080 genes that despite cancer evolution and ITH, are relatively conserved and clonally expressed, relatively unaffected by sampling bias. Furthermore, using machine learning, 23 genes (from the 1,080) were found to be predictive of patient outcomes. Meaning, this novel set of genes or “biomarkers” may be used as a basis for prognosis and to predict mortality in NSCLC. This novel biomarker is named ORACLE or Outcome Risk Associated Clonal Lung Expression signature and scientists are hopeful that it may be used to determine the relative aggressiveness of lung cancers, whilst maintaining a robust function unaffected by ITH. By targeting ORACLE, it mattered less where the biopsy needle is placed on the tumour, as these genes are found clonally. In terms of its effectiveness, a trial shows that having high scores of ORACLE signatures is associated with an increased risk of death within five years of diagnosis. In addition, other trials show that by targeting ORACLE, scientists were able to identify patients with a substantial risk of poor clinical outcomes. Overall, research on the application of ORACLE has shown satisfactory results in predicting patient outcomes and is found to be relatively resistant to the confounding effects of ITH. In summary, we have seen what cancer evolution may cause, and how it shadows the effectiveness of conventional biopsies and biomarkers due to sampling bias in ITH. We also find the research by the TRACERx Consortium and how they aim to study the effects of cancer evolution and ITH, finding a set of genes that are found and expressed throughout the tumour, yet still provide a favourable measure to patient outcomes. Whilst these topics are still under active research, it is clear, how studying cancer evolution and changing the approach to biopsies and biomarker designs can improve the overall quality of diagnosis and cancer prognosis. After all, finding what is wrong is as important as fixing the problem. We hope that similar biomarkers may be developed in the future, applicable to many other types of cancers. Written by Stephanus Steven Related articles: Thyroid cancer / Arginine and tumour growth / NGAL- a marker for kidney damage REFERENCES Biswas, D. et al. (2019) “A clonal expression biomarker associates with lung cancer mortality,” Nature Medicine, 25(10), pp. 1540–1548. Available at: https://doi.org/10.1038/s41591-019-0595-z. Header image: Lung cancer cells. Anne Weston, Francis Crick Institute. Attribution-Non-Commercial 4.0 International (CC BY-NC 4.0)

  • Evolution of AI and the role of NLP | Scientia News

    AI has long been a controversial topic, with some people fearing its potential consequences. This has been exacerbated by popular culture, with movies such as "The Terminator" and "2001: A Space Odyssey" depicting AI systems becoming self-aware and turning against humans. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The evolution of AI: understanding the role of NLP technologies Last updated: 08/03/25 Published: 08/05/23 Artificial intelligence (AI) has long been a controversial topic, with some people fearing its potential consequences. This has been exacerbated by popular culture, with movies such as The Terminator and 2001: A Space Odyssey depicting AI systems becoming self-aware and turning against humans. Similarly, The Matrix portrayed a dystopian future where AI systems had enslaved humanity. Fast forward to 2023- AI has become a normal part of our everyday life, whether we realise it or not. From virtual assistants like Siri and Alexa to personalised movie and product recommendations, AI-powered technologies have revolutionised the way we interact with technology. AI also plays a critical role in industries such as healthcare, finance, and transportation, with algorithms helping to analyse data, identify patterns, and make predictions that lead to better decision-making. As with any industry, the AI industry is very much prone to evolution. In fact, this is especially relevant for the AI industry, given that it engages user habits to learn and redefine its understanding. This has led to the introduction of unforeseen technologies. One of the most studied and developed AI modelling techniques, Natural Language Processing (NLP), has been particularly placed under focus recently with the emergence of technologies such as Open AI’s ChatGPT, Google’s Gemini (formerly Bard) AI and Microsoft’s Bing AI- known as Copilot. ChatGPT in particular, was one of the first technologies of this kind to garner significant fame. Within its first year of release, the GPT-3 model had more than 10,000 registered developers and over 300 applications built on its application programming interface (API). In addition, Microsoft acquired OpenAI's exclusive license to the GPT-3 technology in 2020, further solidifying its position as a leading language model in the industry. ChatGPT works as an advanced artificial intelligence technology designed to understand and process human language. Built on the GPT-3.5 architecture, it uses NLP to comprehend and generate responses that simulate human conversation. ChatGPT is classified as a large language model, which means it has been trained on vast amounts of data and can generate high-quality text that is both coherent and relevant to the input provided. While concerns have been raised about the potential impact of NLP technologies, there are several reasons why we should not fear their emergence. Firstly, NLP has already enabled a wide range of useful applications that have the potential to improve efficiency, convenience, and accessibility. Furthermore, the development and deployment of NLP technologies is subject to ethical considerations and regulations that aim to ensure their responsible use. NLP technologies are not designed to replace humans, but rather to complement and enhance human capabilities. While some jobs may be impacted by automation, new jobs are likely to emerge that require human skills that are not easily replicated by machines. Ultimately, the impact of NLP technologies depends on how they are developed and used. There are always likely to be risks, but by taking a proactive approach to their development and deployment, we can ensure that they are used to benefit society and advance human progress. Written by Jaspreet Mann Related articles: AI: the good, the bad, and the future / Latent space transformations / Markov chains REFERENCES Hirschberg, Julia, and Christopher D. Manning. “Advances in Natural Language Processing.” Science, vol. 349, no. 6245, July 2015, pp. 261–66. DOI.org (Crossref), https://doi.org/10.1126/science.aaa8685. What Is Natural Language Processing? | IBM. https://www.ibm.com/topics/natural-language-processing. Accessed 1 May 2023. Biswas, Som S. “Role of Chat GPT in Public Health.” Annals of Biomedical Engineering, vol. 51, no. 5, May 2023, pp. 868–69. Springer Link, https://doi.org/10.1007/s10439-023-03172-7. Davenport, T.H. (2018). The AI Advantage: How to Put the Artificial Intelligence Revolution to Work. MIT Press. Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O'Reilly Media.

  • University prep | Scientia News

    Resources to help you prepare for university admission. Entrance Exam Preparation Resources to help you with university admission for: medicine , dentistry, natural sciences , physics , maths , engineering . Do note these entrance exams are mainly for UK universities, but can be used for international unis too. It is advised to check with the university when applying. You may also like: A-level resources, IB resources and Extra resources MEDICINE: University Clinical Aptitude Test (UCAT) UCAT resources: UCAT website / The Medic Portal / 6med UCAT Books: 1300 UCAT Practice Questions / 1250 UKCAT Practice Questions / UCAT 700+ UCAT online course: Medify Help with medical exams DENTISTRY: UCAT and BioMedical Admissions Test (BMAT; for University of Leeds only) Dentistry application preparation BMAT: online mastery course / Medify guide / Past papers / 700 BMAT Practice Questions / BMAT ebook For UCAT resources, see above OTHER ADMISSION TESTS Engineering: STEP / PAT University of Cambridge: natural sciences (NSAA) / engineering (ENGAA) / maths (STEP) / physics (PAT)

  • Extra resources | Scientia News

    Resources such as: other websites, textbooks, YouTube videos, and books to help! Aiding university students studying STEM subjects. Extra Resources A masterlist of other websites, textbooks, YouTube videos, and books to help with your studies, research and revision. You may also like: A-level resources, IB resources, Entrance exam preparation, FREE CV check!, STEM book reviews Representation in STEM Sisterhood in STEM GENERAL INFORMATION Referencing guide: Cite Them Right Cite this for me ZoteroBib (fast, free reference generator) Phrasebank to help with essays Free notes and textbooks: Studocu Grammar checker: Grammarly (available as a browser extension) Money financing for students: Save the Student Others: New Scientist (print and online magazine) BBC iPlayer science and nature documentaries WEBSITES TO AID STUDIES Science and maths: MME Revise Cognito Resources Access Tuition Maths Genie LibreTexts: biology , chemistry , physics , maths , engineering , and medicine HELP WITH RESEARCH Databases: - PubMed - MEDLINE (by National Library of Medicine) - ScienceDirect - Web of Science - Literature search: Google Scholar - Participate in actual research: Zooniverse - citizen science - Top multi-disciplinary journal in the field: Nature PHARMACOLOGY AND RELATED Reference sites: - Pharmgkb - Drug Bank - Check which drugs are in trial Textbooks: - Katzung's Basic & Clinical Pharmacology, 16th edition by Todd Vanderah, PhD - The Top 100 Drugs: Clinical Pharmacology and Practical Prescribing by Andrew Hitchings, Daniel Burrage, Dagan Lonsdale and Emma Baker BIOLOGICAL SCIENCES TEXTBOOKS Biology: - Campbell & Reece - Molecular biology and genetics: Molecular Biology of the Cell. 4th edition - Molecular Cell Biology by Lodish et al - Anatomy and physiology: Marieb - Principles of Animal Physiology by Moyes and Schulte - Animal Physiology by Hill, Wyse, and Anderson - Developmental Biology by Barresi and Gilbert - Cancer: The Biology of Cancer by Robert A. Weinberg Biochemistry: - Medical Biochemistry b y N. Mallikarjuna Rao Neuroscience: - Purves et. al - Kandel Immunology: - Immunobiology, 5th edition The Immune System in Health and Disease Genetics: - Emery's Elements of Medical Genetics and Genomics by Turnpenny & Ellard - Lewin’s Genes by Krebs, Goldstein, and Kilpatrick - Human Molecular Genetics by Strachan and Read CHEMISTRY TEXTBOOKS Physical chemistry: - Atkins Physical Chemistry (latest edition) - Solid State Chemistry (Fourth Edition) by Lesley Smart and Elaine Moore Organic chemistry: - Jonathan Clayden Organic Chemistry (latest edition) Inorganic chemistry: - Atkins Physical Chemistry (latest edition) - Housecroft Inorganic Chemistry (latest edition) - Electronic Structure (Basic Theory and Practical Methods) by Richard M. Martin - Two-minute Neuroscience - Amoeba Sisters (biology related) - Khan Academy (all STEM based) - TEDx Talk - Royal Society (range of science videos) - NumberPhile - patrickJMT (maths) - Tyler DeWitt (general chemistry) - Crash Course - Stanford Medicine (wellness) PHYSICS Resources: - Astronomy Picture of the Day - NASA STEM activities Textbooks: - University Physics by Young and Freedman - Introduction to Electrodynamics by Griffiths - Introduction to Elementary Particles by Griffiths - Introduction to Quantum Mechanics by Griffiths - Modern Quantum Mechanics (Third Edition) by J. J. Sakurai and Jim Napolitano - Introductory Statistical Mechanics by Bowley & Sanchez - Statistical Mechanics: A Survival Guide by Glazer & Wark - Electricity and Magnetism by Morin and Purcell - Concepts in Thermal Physics by Blundell and Blundell - Introduction to Solid State Physics by Mittel & McEuen - Solid State Physics by Ashcroft and Mermin - Space, Time, and Geometry by Sean M. - Density Functional Theory by David S. Sholl and Janice A. Steckel - The Physics of Semiconductors: An Introduction Including Nanophysics and Applications by Marius Grundmann - Condensed Matter Field Theory (Second Edition) by Alexander Altland and Ben Simons - Condensed Matter Physics by Michael P. Marder MATHS Textbooks: - Mathematical Methods for Physicists and Engineers by Riley Benson and Hobson - Mathematics for Natural Scientists 1 and 2 by Lev Kantorovich - Advanced Engineering Mathematics by Kreyszig - Thomas's Calculus by George B. Thomas - Mathematical Methods for Science students by G Stephenson - Contemporary Abstract Algebra by Joseph A. Gallian Read this article on how to excel in maths COMPUTER SCIENCE AND RELATED Resources: - Codeacademy - W3Schools ( has tutorials for HTML/ CSS/ Javascript, Python, Java, and many other languages) - Adacomputerscience - TeachComputing - Codewars (practise coding with your friends) - freeCodeCamp ENGINEERING Resources: - eFunda- formulae - Engineering statistics handbook - The Engineering Toolbox - free tools, calculators, and more - Engineers Edge - Online Ethics - ethics in engineering and science PSYCHOLOGY Resources: - QMUL resource guides - Psychology Today - Royal Holloway activities and research - Verywell Mind INFORMATIVE YOUTUBE CHANNELS

  • A breakthrough procedure for efficient and effective development | Scientia News

    Revolutionising drug discovery Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link A breakthrough procedure for efficient and effective development 27/02/25, 11:33 Last updated: Published: 07/01/24, 14:05 Revolutionising drug discovery Discover how researchers have transformed the early stages of drug development with a ground-breaking test that identifies the most promising compounds. "Saving time and resources by focusing on the most potential compounds". Researchers at the Centre for Cancer Drug Discovery at The Institute of Cancer Research (ICR), London have made a significant breakthrough in the field of drug discovery. Their new investigative procedure promises to revolutionize the early stages of drug development by making it more efficient and effective. This ground-breaking test allows scientists to identify new biologically active compounds with the highest potential, saving valuable time and resources. Thanks to this procedure, researchers worldwide can now select only the most promising compounds to develop into effective medications. The study, funded by Cancer Research UK, has been published in the prestigious Journal of Medicinal Chemistry, highlighting its importance and impact on the field. A new approach to fragment-based drug discovery Fragment-based drug discovery has become the standard method for identifying the starting point of a drug discovery program. Scientists screen libraries of compounds, known as fragments, to determine their interaction with a potential anti-cancer target. Previously, scientists could only qualify the interactions between fragments and target proteins as a simple "yes" or "no". However, weak, or nonspecific interactions were challenging to evaluate accurately. Now, thanks to this latest research, researchers have developed a quantitative approach to measure the strength of these interactions. By ranking the fragments based on their interaction strength, research teams can confidently identify the most active compounds to move forward in the drug development process. This additional information allows scientists to refine the selected fragments by optimizing their shape, combining them with other fragments, or both. The result is a more streamlined and efficient drug discovery workflow. Realising the potential of the new procedure Dr. Maggie Liu, the first author of the study and a Senior Scientific Officer at the ICR, expressed confidence that this new procedure will become an integral part of the standard drug discovery workflow. The method is accessible to any team with the right equipment, providing a valuable tool for the wider drug discovery community. The ICR has already started follow-up work on one of the identified fragments using this new test. They plan to utilize this procedure for all future projects, recognizing its potential to accelerate the development of life-saving drugs. Compounds discovered from fragment-based drug discovery (FBDD) and their potential effects FBDD has emerged as an effective strategy in drug discovery, leading to the identification of several compounds with promising potential, including: 1. Vemurafenib: FDA approved in 2011, Vemurafenib has shown efficacy against specific targets, potentially offering treatment options for certain conditions. 2. Venetoclax: Another FBDD-derived drug, Venetoclax, received FDA approval in 2016. It has demonstrated positive outcomes in clinical trials, indicating its potential as a therapeutic agent. 3. Pexidartinib: Approved in 2019, Pexidartinib is a fragment-derived drug that has exhibited promising effects against its intended targets. 4. Erdafitinib: Similarly, Erdafitinib, developed through FBDD, obtained FDA approval in 2019. It has shown potential in clinical trials, highlighting its significance as a therapeutic option. 5. Sotorasib: This compound, approved in 2021, is another example of a fragment-derived drug with potential therapeutic benefits against specific targets. 6. Asciminib: Lastly, Asciminib, also approved in 2021, is a fragment-based drug that has demonstrated efficacy in clinical trials, showcasing its potential as a therapeutic intervention. These compounds represent a fraction of the molecules discovered through FBDD, and their effects vary depending on the specific targets they interact with. Further research and clinical trials are necessary to fully understand the therapeutic potential of these compounds and their broader impact on various diseases and conditions. Testing the R2KD tool Dr. Liu and her team successfully used the R2KD tool to identify new biologically active compounds. This tool utilizes a ligand-observed nuclear magnetic resonance (LONMR) approach, similar to an MRI scanner, to observe fragment interactions. By measuring the transverse relaxation rate (R2) of the fragments, which indicates their speed in the solution, the researchers could determine the fragments' interaction with the target protein. They then applied a new mathematical formulation to calculate a binding affinity value (Kd) for each fragment and compare their Kd values. This allowed them to identify the fragments with the strongest interactions. The researchers named their test 'R2KD'; based on these steps. By using this method, scientists can now quantitatively determine the binding affinity of fragments, which helps in selecting compounds with the most potential for further development. This new procedure makes the early stages of drug discovery more efficient, saving time and resources by focusing on the most promising compounds. Written by Sara Maria Majernikova Related articles: AI in drug discovery / AI in medicinal chemistry / A breakthrough in prostate cancer treatment / Arginine and tumour growth Project Gallery

  • Economics | Scientia News

    Sharpen your knowledge on this subject with articles dissecting the branch of behavioural economics (the role of honesty, endowment effect, loss of aversion, effect of time), among others. Economics Articles Sharpen your knowledge on this subject with articles dissecting the branch of behavioural economics (the role of honesty, endowment effect, loss of aversion, effect of time), among others. You may also like: Maths The role of honesty Article #1 in a series on behavioural economics The endowment effect Article #2 in a series on behavioural economics Loss aversion Article #3 in a series on behavioural economics COMING SOON

  • An introduction to the human brain | Scientia News

    Your brain is truly an extraordinary structure, and it’s the reason you can do all the amazing things you do. This mass of wrinkly material weighs only about 1.3 kilograms, yet it controls every single thing you will ever do. It’s the engine that drives our behaviour and allows us to interact with the world.  Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Discovering the Wonders of the Human Brain Last updated: 18/11/24 Published: 13/04/23 Your brain is truly an extraordinary structure, and it’s the reason you can do all the amazing things you do. This mass of wrinkly material weighs only about 1.3 kilograms, yet it controls every single thing you will ever do. It’s the engine that drives our behaviour and allows us to interact with the world. Despite its relatively small size — the brain makes up only 2% of our body mass — it’s an incredibly energy-intensive organ. In fact, it consumes more than 20% of our oxygen supply and blood flow and uses more energy than any other tissue in the body. This is because it has a dense network of neurons, specialized cells that transmit signals throughout the nervous system. There are around 100 billion neurons in the human brain, each connected to thousands of other neurons, passing signals to each other via trillions of synapses. The human brain has more connections than there are stars in the Milky Way galaxy and it can process information at a speed of up to 120 meters per second! Even when you are asleep your brain never really “shuts off”! While you’re snoozing away, your brain is busy consolidating memories, processing emotions, flushing out harmful toxins and keeping your mind sharp and healthy. One more key feature that sets our brain apart is the cortex, the outer layer of the brain responsible for many of the higher cognitive functions that are unique to humans, such as abstract reasoning and language. While all mammals have a cerebral cortex, the human cortex is disproportionately large, accounting for 80% of our total brain mass, and it’s much more complex than any other animal. Now, have you ever wondered how the human brain compares to the brains of other animals? Some animals have much larger brains than we do. For instance, the brain of a sperm whale weighs around 8 kilograms, making it the largest brain of any animal on Earth. To put it into perspective, that’s about five times the size of a human brain! Similarly, the brains of elephants are also much larger than ours, weighing in at around 5 kilograms. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates. We might not have the largest brain compared to other species however, the human brain is larger than most animal brains relative to body size. Why did humans evolve such large brains in the first place? The question has puzzled scientists for years, but there are a few theories that have gained traction. The “social brain” hypothesis suggests that our large brains evolved as a result of our ancestors’ increasingly complex social structures. As early humans began to live in larger groups, they needed to be able to navigate the complex social dynamics of their communities, for example cooperating for resources and maintaining social relationships. Another theory known as “ecological intelligence”, suggests that the pressure for larger brains was driven by environmental conditions. Our ancestors had to adapt to the challenges posed by the environment, such as finding food and shelter. Finally, the “cultural intelligence” hypothesis emphasizes the challenge of learning from different cultures and teaching their own. While each of these theories has some evidence to support it, there is still much debate among scientists about which theory (if any) is the most accurate. It is likely that all three theories played a role in the evolution of the human brain, to varying degrees. The human brain is a fascinating organ that has captivated scientists are researchers for centuries. Despite all our advances in neuroscience, however, there is still so much that we don’t know about how the brain works and what it is truly capable of. Written by Viviana Greco Related article: The brain-climate connection REFERENCES González-Forero, M., & Gardner, A., 2018. Inference of ecological and social drivers of human brain-size evolution. Nature, 557(7706), Article 7706. https://doi.org/10.1038/s41586-018-0127-x Jacobs, B., Johnson, N. L., Wahl, D., et. al, 2014. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates. Frontiers in Neuroanatomy, 8. https://doi.org/10.3389/fnana.2014.00024

  • The dopamine connection | Scientia News

    How your gut influences your mood and behaviour Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The dopamine connection 10/05/24, 10:34 Last updated: Published: 25/03/24, 12:01 How your gut influences your mood and behaviour Introduction to dopamine Dopamine is a neurotransmitter derived from an amino acid called phenylalanine, which must be obtained through the diet, through foods such as fish, meat, dairy and more. Dopamine is produced and released by dopaminergic neurons in the central nervous system and can be found in different brain regions. The neurotransmitter acts via two mechanisms: wiring transmission and volume transmission. In wiring transmission, dopamine is released to the synaptic cleft and acts on postsynaptic dopamine receptors. In volume transmission, extracellular dopamine arrives at neurons other than postsynaptic ones. Through methods such as diffusion, dopamine then reaches receptors in other neurons that are not in direct contact with the cell that has released the neurotransmitter. In both mechanisms, dopamine binds to the receptors, transmitting signals between neurons and affecting mood and behaviour. The link between dopamine and gut health Dopamine has been known to result in positive emotions, including pleasure, satisfaction and motivation, which can be influenced by gut health. Therefore, what you eat and other factors, including motivation, could impact your mood and behaviour. This was proven by a study (Hamamah et al., 2022), which looked at the bidirectional gut-brain connection. The study found that gut microbiota was important in maintaining the concentrations of dopamine via the gut-brain connection, also known as the gut microbiota-brain axis or vagal gut-to-brain axis. This is the communication pathway between the gut microbiota and the brain facilitated by the vagus nerve, and it is important in the neuronal reward pathway, which regulates motivational and emotional states. Activating the vagal gut-to-brain axis, which leads to dopamine release, suggests that modulating dopamine levels could be a potential treatment approach for dopamine-related disorders. Some examples of gut microbiota include Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus , and they can affect dopamine by modulating dopaminergic activity. These gut microbiota are able to produce neurotransmitters, including dopamine, and their functions and bioavailability in the central nervous system and periphery are influenced by the gut-brain axis. Gut dysbiosis is the disturbance of the healthy intestinal flora, and it can lead to dopamine-related disorders, including Parkinson's disease, ADHD, depression, anxiety, and autism. Gut microbes that produce butyrate, a short-chain fatty acid, positively impact dopamine and contribute to reducing symptoms and effects seen in neurodegenerative disorders. Dopamine as a treatment It is important to understand the link between dopamine and gut health, as this could provide information about new therapeutic targets and improve current methods that have been used to prevent and restore deficiencies in dopamine function in different disorders. Most cells in the immune system contain dopamine receptors, allowing processes such as antigen presentation, T-cell activation, and inflammation to be regulated. Further research into this could open up a new possibility for dopamine to be used as a medication to treat diseases by changing the activity of dopamine receptors. Therefore, dopamine is important in various physiological processes, both in the central nervous and immune systems. For example, studies have shown that schizophrenia can be treated with antipsychotic medications which target dopamine neurotransmission. In addition, schizophrenia has also been treated by targeting the dysregulation (decreasing the amount) of dopamine transmission. Studies have shown promising results regarding dopamine being used as a form of treatment. Nevertheless, further research is needed to understand the interactions between dopamine, motivation and gut health and explore how this knowledge can be used to create medications to treat conditions. Conclusion The bidirectional gut-brain connection shows the importance of gut microbiota in controlling dopamine levels. This connection influences mood and behaviour but also has the potential to lead to new and innovative dopamine-targeted treatments being developed (for conditions including dopamine-related disorders). For example, scientists could target and manipulate dopamine receptors in the immune system to regulate the above mentioned processes: antigen presentation, T-cell activation, and inflammation. While current research has shown some promising results, further investigations are needed to better comprehend the connection between gut health and dopamine levels. Nevertheless, through consistent studies, scientists can gain a deeper understanding of this mechanism to see how changes in gut microbiota could affect dopamine regulation and influence mood and behaviour. Written by Naoshin Haque Related articles: the gut microbiome / Crohn's disease Project Gallery

bottom of page