Search Index
355 results found
- Unmasking aggression: a result of personal or social triggers? | Scientia News
Aggression has the confluence of individual predisposition and maintenance via social context Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Unmasking aggression: a result of personal or social triggers? 14/07/25, 15:10 Last updated: Published: 01/01/25, 14:02 Aggression has the confluence of individual predisposition and maintenance via social context Introduction Anderson & Bushman (2002) define aggression as behaviour aimed at causing harm to another individual. Aggression can be measured by observing a signal of intention or aggression rating by self or others. The social theories of aggression include Dollard's frustration-aggression theory and Bandura's Social Learning Theory, while the individual factors theories account for personality traits and the influence of alcohol. However, there is no definite answer to whether social or individual factors are most important in explaining human behaviour. The interaction between social and individual factors will be explored to gain a deeper understanding of aggression. Social theories The frustration-aggression hypothesis proposed by Dollard et al. (1939) defines frustration as the emotion that follows when the occurrence of an instigated goal-response is interfered with, in turn leading to anger and aggression. According to this hypothesis, a person’s aggressive tendencies will be more intense the closer the individual is to achieving a goal before an obstacle appears. Many support this hypothesis, including Dill and Anderson (1995), who found that levels of aggression resulting from unjustified frustration were higher than justified frustration because they were caused by situational constraints rather than dispositional qualities. However, Berkowitz (1989) criticises Dollard et al.'s hypothesis, saying that frustration can only produce aggressive behaviour if it causes adverse effects. Due to the wide variety of negative and positive effects of frustration, it is important to revisit and clarify the frustration-aggression hypothesis. Additionally, aggression is often explained by the Social Learning Theory (SLT), proposed by Bandura et al. (1963), which states that aggressive behaviour is a learned behaviour reinforced by imitation and rewards or punishment. Bandura conducted the renowned Bobo Doll Study in 1961, in which children mimicked adult behaviour and attacked the doll after watching the researchers physically and verbally abuse a clown-faced inflatable toy in front of them, making this study extremely influential in understanding the role that families and household dynamics play in human behaviour. Based on this theory, exposure to TV violence can teach aggressive conduct and provide a model of behaviour to base actions upon. In SLT, rather than frustration generating an aggressive drive that can only be reduced by injurious behaviour, aversive stimulation creates general emotional arousal that can result in aggressive behaviour. Therefore, social theories encompass a broad range of disinhibitory factors and provide a broad theory explaining both impulsive and principled aggressive conduct. Individual factors theories Individual differences and variables, like personality traits, have also contributed to the study of aggressive behaviour. Hyatt et al. (2019) stated that certain personality traits such as narcissism and sadism have been meta-analytically linked to aggression shown in a lab setting. The lab paradigm captures aggression as it manifests whilst controlling for confounding variables, such as different types of aggression. However, the lab paradigm lacks construct validity because researchers don’t interpret the subjects’ intentions and motives when operationalising aggression. Further evaluation comes from Bettencourt et al. (2006), who meta-analysed personality dimensions and stated that provocation can cause aggression. They note that individuals with Type A personalities often exhibit impulsivity and emotional reactivity, which are positively associated with aggression. Thus, situational circumstances such as provocation and aggressive cues interact with these personality factors, together shaping the likelihood and intensity of aggressive behaviour. Additionally, the interplay between personality and alcohol can explain aggression. Alcohol reduces inhibitions that regulate 'normal' behaviour and increases aggression. Miller et al. (2009) concluded that alcohol may facilitate aggression in high-trait individuals specifically, those who score high on traits associated with aggression, such as impulsivity, hostility, or a predisposition toward anger—by impairing the drinker’s inhibition. Moreover, further research indicates a strong relationship between alcohol consumption and antisocial personality. Therefore, any discussion of personal factors and personality in aggression would be incomplete without considering the influence of alcohol. The interplay between social and individual trait theories Allen et al. (2018) created a model that encompasses both the social and the individual trait theories. The General Aggression Model (GAM) considers social, biological, and individual factors in aggression. This model consists of three stages: input, appraisal, and action. The input stage determines the likelihood of personal and situational factors causing aggression. For instance, individual differences, such as personality, social rejection, and provocation, are identified as risk factors for aggression. During the appraisal stage, the individual decides how to respond. Their response can be aggressive or non-aggressive, depending on the resources, time, and event. The action then influences the social encounter, which can alter personal and situational factors, leading to those factors restarting the cycle. Hence, this model proposes that individuals learn situations that lead to aggressive outcomes. To reduce aggression and offer treatment, the GAM has been applied to intergroup violence and therefore can be applied to a wide range of situations in real life. Conclusion In conclusion, aggression has the confluence of individual predisposition and maintenance via social context. For instance, as discussed previously, socialisation experiences may contribute to aggressive behaviour in individuals with certain personality traits. Thus, it is difficult to distinguish social and individual factors when explaining aggression, as most human behaviour is a multifaceted phenomenon with multiple determinants. Therefore, future research should be more holistic in the explanations of aggression, encompassing both social and individual factors. Written by Pranavi Rastogi Related articles: Emotional chemistry / Psychology of embarrassment / Brain of a bully REFERENCES Allen, J. J., Anderson, C. A., & Bushman, B. J. (2018). The general aggression model. Current Opinion in Psychology,19 , 75-80. doi:10.1016/j.copsyc.2017.03.034 Anderson, C. A., & Bushman, B. J. (2002). Human aggression. Annual Review of Psychology, 53 (1), 27-51. doi:10.1146/annurev.psych.53.100901.135231 Bandura, A., Ross, D., & Ross, S. A. (1963). Imitation of film-mediated aggressive models. Journal of Abnormal and Social Psychology, 66, 3-11 Berkowitz, L. (1989). Frustration-aggression hypothesis: Examination and reformulation. Psychological Bulletin, 106 (1), 59-73. doi:10.1037/0033-2909.106.1.59 Bettencourt, B.A. et al. (2006) ‘Personality and aggressive behavior under provoking and neutral conditions: A meta-analytic review.’, Psychological Bulletin , 132(5), pp. 751–777. doi:10.1037/0033-2909.132.5.751. Dill, J. C., & Anderson, C. A. (1995). Effects of frustration justification on hostile aggression. Aggressive Behavior, 21 (5), 359-369. doi:10.1002/1098-2337(1995)21:5<359::aid-ab2480210505> 3.0.co ;2-6 Dollard, J., Miller, N. E., Doob, L. W., Mowrer, O. H., & Sears, R. R. (1939). Frustration and aggression. doi:10.1037/10022-000 Hyatt, C. S., Chester, D. S., Zeichner, A., & Miller, J. D. (2019). Analytic flexibility in laboratory aggression paradigms: Relations with personality traits vary (slightly) by operationalization of Aggression. Aggressive Behavior, 45 (4), 377-388. doi:10.1002/ab.21830 Miller, C.A., Parrott, D.J. and Giancola, P.R. (2009) ‘Agreeableness and -related aggression: The mediating effect of trait aggressivity.’, Experimental and Clinical Psychopharmacology , 17(6), pp. 445–455. doi:10.1037/a0017727. Project Gallery
- Blood | Scientia News
A vital fluid Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Blood 20/03/25, 12:02 Last updated: Published: 07/09/23, 10:16 A vital fluid A comprehensive guide to the human blood system and alternatives Human blood Blood is a vital fluid for humans and vertebrates. It transports nutrients, including oxygen, to cells and tissues. Blood is made of different components: red blood cells, white blood cells, platelets and plasma. Red blood cells (also called erythrocytes) contain haemoglobin, which gives blood its red colour. Haemoglobin helps to carry oxygen to the body from the lungs. White blood cells (also called leukocytes) defend the body against infections. Lymphocytes are a type of white blood cell, and the two types are T lymphocytes and B lymphocytes. T lymphocytes target infected cells and regulate the function of other immune cells. B lymphocytes create antibodies, which are proteins that can destroy foreign substances like bacteria and viruses. Platelets (also called thrombocytes) are small cell fragments. They are essential in blood clotting, a process known as coagulation. They also help wounds heal and contribute to the immune response. Plasma is the liquid component in blood, made of water, ions, proteins, nutrients, wastes and gases. Its main role is transporting substances such as blood cells and other nutrients throughout the body. Artificial blood There are two main types of artificial blood: haemoglobin-based oxygen carriers (HBOCs) and perfluorocarbons (PFCs). HBOCs are synthetic solutions designed to carry oxygen. They are usually a smaller size than RBCs. The haemoglobin is modified and covered with carriers to ensure the HBOCs do not break down inside the body. They can be used for blood transfusions that need to be done immediately or when there is too much blood loss. PFCs are derived from fluorine-containing and carbon-containing chemicals. They have a high capacity for carrying and delivering oxygen. Advantages and disadvantages of artificial blood Artificial blood can be beneficial because it can be used for any patient who needs a blood transfusion, regardless of their blood type, if the substitute has the universal O blood group. There is also less chance of diseases being passed to patients using artificial blood. However, artificial blood has been shown to have adverse side effects, including high blood pressure and a higher chance of heart attacks. The future of artificial blood As of 2022, there have been experiments in the NHS with laboratory-grown RBCs in the RESTORE randomised controlled clinical trial. With further research, artificial blood can be refined and used more, especially when there is low blood availability for transfusions or for people with blood-related diseases. Written by Naoshin Haque Related articles: Sideroblastic anaemia / Kawasaki disease Project Gallery
- The role of dopamine in the movement and the reward pathway | Scientia News
What is it and what does it do? Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The role of dopamine in the movement and the reward pathway 14/07/25, 15:01 Last updated: Published: 21/09/24, 15:59 What is it and what does it do? Dopamine is a neurotransmitter produced mainly in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNPC) in the brain, exhibiting both excitatory and inhibitory effects in different brain pathways. Dopamine is important in mediating the mesolimbic and nigrostriatal pathways for reward and movement, respectively. Therefore, damage to dopaminergic neurones affects dopamine levels in the brain and can consequently result in diseases associated with abnormal dopamine levels. Movement The role of dopamine is vital in modulating the initiation of movement through both the direct and indirect pathways of the basal ganglia ( Figure 1 ). In the direct pathway, dopamine produced from the SNPC binds to the D1 Gs-coupled receptors in the striatum resulting in the activation of the intracellular signalling cascade. Activation of these receptors results in increased intracellular cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) levels, which control the modulation of ion channels, including calcium channels for further depolarisation of the striatal cells. The excitation of the striatum results in GABAergic inhibition of the globus pallidus internal segment (GPI) and the substantia nigra pars reticulata (SNPR). Hence, this results in the disinhibition of the thalamus, allowing for excitatory glutamatergic transmission to the motor cortex for the facilitation of movement. The activation of the striatum via D1 receptor stimulation can be supported by a study conducted by Gerfen et al. 2012 in which they concluded that PKA activates calcium voltage-gated 1 L-type calcium channels, resulting in depolarisation of striatal cells, which causes the enablement of movement via the direct pathway. However, in the indirect pathway, dopamine binds to D2 Gi-coupled receptors with a higher affinity than D1 receptors, causing inhibition of these receptors and their intracellular signalling cascades. Consequently, there is decreased inhibition of potassium channels by the second messengers, resulting in hyperpolarisation due to potassium efflux from the striatal cells. As the striatum is inactivated, this reduces the overall inhibitory effect of the indirect pathway on the thalamus, allowing for movement. Therefore, dopamine is critical for the normal functioning of humans by allowing them to control their movements for survival, for example, by pushing a ball away when it is about to hit them. Reward pathway The mesolimbic dopaminergic pathway ( Figure 2 ) is the most recognised reward pathway in the brain. This pathway contains the VTA, located in the midbrain, the nucleus accumbens (NA) and the tuberculum olfactorium (TO), located in the basal forebrain. The lateral regions of the VTA are the most abundant in A10 dopaminergic neurones in comparison to other regions of the VTA. These A10 neurones are activated in association with reward anticipation, for example, after exercising. The medial VTA dopaminergic neurones project to the core and medial shell regions of the NA, and the lateral VTA project towards the lateral shell region of the NA (figure 3). Thus, increasing dopamine levels in the NA and inducing the processing of the reward. Moreover, dopaminergic inputs from the VTA to the TO allow the individual to develop an odour preference for a specific stimulus due to motivation-oriented behaviour. Hence, this could be a reason why the anticipation of eating one's favourite food by evoking the memory of its smell is associated with the feeling of reward. Experiments conducted by FitzGerald et al. 2014 support my points regarding the role of the TO in the mesolimbic pathway. In their study, mice were given a choice of two different odours to choose from. The team noted activation of c-Fos neurones in the forebrain, indicating neuronal activity in this region, which is involved in reward motivation behaviour. Hence, allowing them to support the importance of the TO in odour processing and reward behaviour in the mice when choosing a more pleasurable odour. Eventually, projections from the TO and NA converge at the ventral pallidum, where the enrichment of reward-related learning occurs. Therefore, dopamine is essential for the initiation of the reward pathway in ensuring the continuation of reward behaviour when exposed to a specific stimulus and for survival due to the association of reproduction with reward. Conclusion In conclusion, dopamine is essential for the initiation of movement and in the reward pathway for normal human functioning and survival. Studies into aldehyde-dehydrogenase 1 in the SNPC have found that it protects dopaminergic neurones against neurodegeneration. Further studies will aid in understanding the mechanisms by which this enzyme is regulated and the actions by which it protects dopaminergic neurones in the SNPC. Written by Maria Z Kahloon Related articles: The dopamine connection between the gut and the brain / Interplay of hormones and microbiome / Types of movement Project Gallery
- Teaching maths like it matters | Scientia News
The importance of implementing Maths into our lives Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Teaching maths like it matters 11/07/25, 09:54 Last updated: Published: 03/10/23, 13:43 The importance of implementing Maths into our lives …But I’m never going to use Algebra in my life! The above is a typical response from students across the country when walking into a Maths class. I did not understand others’ disdain, because I love Maths. I got satisfaction from solving numerical problems, stimulation from equations, and excitement from learning new variables like alpha, or constants like Pi. The abstract nature of Maths was like art to me. Later, I realised that not all my peers felt the same way, that somehow, I was the anomaly and that they were the norm. Many maths teachers feel the same way. They get lost in the subject that they love and try to teach it in the way that makes sense to them, without thinking on how the lack of context in equations and processes means nothing to disengaged students. As teachers, our job is to show how applicable Maths can be to our students on an individual basis. Rather than using real-life questions as extensions after the core activity, we must utilise them from the beginning when introducing topics, showing student’s how the methods that they learn can be applied to have some use beyond a pass mark in their exams. I am not talking about examples of ladders leaning against walls when teaching Pythagoras’ theorem and SOHCAHTOA, or, taking counters from a bag, to explain Probability. The examples here are forced, no student will connect with them because they are not lived examples or likely scenarios in most of their lives. We need to build strong relationships with our students, understand their demographic and interests, then introduce topics based on this. For example: If I know that my class enjoys football, I will begin with a video of Messi playing the game, pausing the video, and splitting the pitch up into segments, which can lead a conversation into areas of segments and circles, or, I can discuss the trajectory of the ball after a kick, to talk about quadratic equations. In another class, we can ask what students are budgeting for, perhaps concert tickets or new clothes, and use that to open a discussion into arithmetic series. Another great example is asking students to find an event happening somewhere in the country that they would like to go to, and as a class, plan for this. We would use research skills, calculate speed, distance and time if going by car, or pull up a train timetable where we can teach two-way tables and time conversions. To create meaningful connections to Math topics will take time, effort, and research, and the difficulty will be that not every application will be relatable to every cohort. We will need to build a portfolio of contextual examples related to each topic, however, if there is buy-in from others in our departments, it is an achievable target. In conclusion, we must teach Maths to students in meaningful ways that applies to their life, to keep up engagement and motivation as well as providing opportunities to deepen understanding. Maths should be based around conversation and interests, rather than an exercise of memorising and processes. It should make sense to students, it should matter. Written by Sara Altaf Related article: The game of life Project Gallery
- Medical Biotechnology | Scientia News
CRISPR, regenerative medicine, vaccine development and recombinant DNA tech Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Medical Biotechnology 10/07/25, 10:21 Last updated: Published: 03/06/23, 13:57 CRISPR, regenerative medicine, vaccine development and recombinant DNA tech Introduction Throughout the course of human history, the foundation of medicine has predominantly relied upon biochemistry. Whereby, scientists utilise naturally occurring and artificially synthesised chemical compounds to elicit therapeutic responses within the body. However, during the 21st century, the field of medicine witnessed a paradigm shift towards medical biotechnology- driving major breakthroughs in healthcare. What is medical biotechnology? Medical biotechnology can be defined as the use of living organisms or their products to investigate, understand and target biological systems in order to improve healthcare outcomes. By integrating the principles of genetic engineering and biological processes, scientists are able to develop novel pharmaceuticals and create diagnostic tools for disease management. Major advancements in medical biotechnology A groundbreaking technology within this field is the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) — Cas9 system. Which utilises CRISPR-associated protein Cas9 and guide RNA (gRNA) as a molecular tool to precisely modify genetic material. By harnessing this gene editing system, scientists can manipulate specific DNA sequences and modulate gene expression, making it an invaluable tool towards precision medicine. Its ability to correct genetic defects has shown promise in the future development of targeted therapies for genetic diseases. Regenerative medicine, another frontier in medical biotechnology aims to regenerate damaged or diseased tissues and organs. This interdisciplinary field integrates principles from tissue engineering and stem cell biology to enable tissue repair and regeneration. Stem cells possess a remarkable capacity to self-renew and differentiate into various specialised cell types. Through research biotechnologists seek to engineer functional tissues and organs for transplantation or stimulate the body's innate regenerative abilities. The development of vaccines is yet another critical aspect of medical biotechnology. Vaccines are designed to stimulate the immune system and confer immunity against specific pathogens, thereby preventing infectious diseases. Modern biotechnology techniques, such as genetic engineering and cell culture, enable cost-effective vaccine development. Recombinant DNA technology enables antigen production in non-pathogenic host cells, eliminating the need for pathogen harvesting. Ongoing advancements include RNA/DNA vaccines, allowing antigen production within recipients' bodies. Conclusion Medical biotechnology continues to play a pivotal role in advancing scientific knowledge and enhancing disease diagnostics and treatment. It holds immense promise for the future of healthcare, particularly in the field of precision medicine. However, it is crucial to acknowledge that this technology also carries inherent risks. Misuse can lead to negative consequences, such as bioterrorism and other destructive outcomes. Written by Komal Nasir Related article: Biggest innovations in the biosciences currently Project Gallery
- Iron deficiency anaemia | Scientia News
A type of anaemia Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Iron deficiency anaemia 10/07/25, 10:20 Last updated: Published: 27/06/23, 17:10 A type of anaemia This article is no. 2 of the anaemia series. Next article: anaemia of chronic disease . Previous article: Anaemia . Aetiology Iron deficiency anaemia (IDA) is the most frequent in children due to rapid growth (adolescence) and poor diets (infants), and in peri and post -menopausal women due to rapid growth (pregnancy) and underlying conditions. Anaemia typically presents, in around 50% of cases as headache, lethargy and pallor depending on the severity. Less common side effects include organomegaly and Pica which occurs in patients with zinc and iron deficiency and is defined by the eating of things with little to no nutritional value. Pathophysiology Iron is primarily sourced through diet, as haem (Fe2+) and non-haem iron (Fe3+). Fe2+ is sourced through meat, fish, and other animal-based products, Fe2+ can be absorbed directly through the enterocyte via the haem carrier protein1 (HCP1). Fe3+ is less easily absorbed and is mostly found in plant-based products. Fe3+ must be reduced and transported through the duodenum by the enzyme duodenal cytochrome B (DcytB) and the divalent metal transporter 1 (DMT1), respectively. Diagnosis As with any diagnosis, the first test to run would be a full blood count and this will occur with all the anaemias. In suspected cases of anaemia, the Haemoglobin (Hb) levels would be lower than 130 in males and 120 in females. The mean cell volume (MCV) is a starting point for pinpointing the type of anaemia, for microcytic anaemias you would expect to see an MCV < 80. Iron studies are best for diagnosing anaemias, for IDA you would expect most of the results to be low. A patient with IDA has little to no available iron so the body would halt the mechanism’s for storing iron. As ferratin is directly related to storage, low ferratin can be a lone diagnostic of IDA. Total iron-binding capacity (TIBC) would be expected to be raised, as transferrin transports iron throughout the body, the higher it is the more iron it would be capable of binding to. Elliptocytes (tear drop) are elongated RBC, often described as pencil like in structure and are regularly seen in IDA and other anaemias. Typically, one would see hypochromic RBC as they contain less Hb than normal cells, the Hb is what gives red cells their pigment. It’s not uncommon to see other changes in RBC such as target cells, given their name due to the bullseye appearance. Target cells are frequently seen in cases with blood loss. Summary IDA is the most frequent anaemia affecting patients of all age ranges and usually presents with lethargy and headaches. Dietary iron from animal derivatives are the most efficient source of iron uptake. Diagnosis of IDA is through iron studies, red cell morphological investigations alongside clinical presentation, to rule out other causes. Written by Lauren Kelly Project Gallery
- The Survival Secrets of the Arctic Springtail | Scientia News
Antifreeze proteins and frozen foods Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The Survival Secrets of the Arctic Springtail 04/07/25, 12:59 Last updated: Published: 21/09/24, 16:09 Antifreeze proteins and frozen foods Introduction Approximately 450 million years ago, during the Ordovician period, the Earth was characterised by a hot and humid globe. The sea was teeming with life, with early squids, eel-like fish, and sea worms hunting smaller animals. However, there was no sign of movement above ground as the animals had not yet crawled ashore. This period of warmth created ideal living conditions for wildlife, but it was about to change dramatically. Shortly after, the land masses began to freeze, and an ice cap started to spread. The once warm and accommodating waters turned cold and inhospitable, leading to the second-worst mass extinction in the history of the planet. Many species succumbed to the harsh conditions, but one animal survived - the springtail. The springtail, a small insect-like animal, had developed a special strategy to combat the cold. Its cells started producing proteins that could protect them from freezing. This discovery challenges the previous belief that animals did not develop antifreeze proteins until much later. Research from Aarhus University has shown that the springtail might have been the first animal to develop such proteins. Applications in the Food Industry Since then, scientists have found antifreeze proteins in various animals, plants, and microorganisms. These proteins have also found applications in different industries. One of the industries utilising antifreeze proteins is the food industry, especially in producing frozen foods. Frozen foods often suffer from changes in taste and texture due to the formation of ice crystals. However, by incorporating antifreeze proteins, these undesirable effects can be prevented. Industrial yeast cell cultures have been engineered to produce antifreeze proteins derived from fish genes. These proteins can then be added to different foods, including ice cream, to improve texture and prevent the formation of ice crystals. Exploring Arctic Fish Aside from their contribution to the food industry, springtails have also fascinated scientists due to their ability to survive in extremely cold regions. The discovery of antifreeze proteins explained how arctic fish could swim in icy seawater. The proteins prevent ice from forming in the cells and blood of the fish, allowing them to survive in freezing conditions. Martin Holmstrup, a researcher at Aarhus University, oversees colonies of springtails in his laboratory. These small animals require minimal space and can be easily maintained in Petri dishes with a base of moist plaster and a feed of dry yeast. Researchers have determined that springtails developed these proteins long before other animals by studying the DNA sequences responsible for building antifreeze proteins. The discovery of antifreeze proteins in springtails opens up possibilities for various applications, including in the food industry. These proteins have been found to prevent ice crystal formation, which can affect the taste and texture of frozen foods. The genes responsible for their production have been copied into industrial yeast cell cultures to utilise these proteins. This allows the yeast to produce the antifreeze proteins, which can then be added to different foods. One example is the use of these proteins in ice cream, where they help create a delightful texture and allow the ice cream to be thawed and refrozen without compromising its quality. Conclusion The discovery of antifreeze proteins in springtails has revolutionised various industries, particularly the food industry. These proteins have been found to prevent ice crystal formation, improving the taste and texture of frozen foods. Incorporating antifreeze proteins derived from fish genes into yeast cell cultures can produce and add these proteins to different foods, such as ice cream, ensuring a delightful texture and the ability to thaw and refreeze without compromising quality. This remarkable adaptation of springtails has provided insight into their survival in extremely cold regions and opened up possibilities for further applications of antifreeze proteins in various fields. Written by Sara Maria Majernikova Related articles: p53 protein / Zinc finger proteins / Emperor penguins, kings of ice Project Gallery
- Female Nobel Prize Winners in Chemistry | Scientia News
Contributions include artificial radioactive atoms, atomic structure, ribosome research Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Female Nobel Prize Winners in Chemistry 02/05/25, 11:30 Last updated: Published: 03/06/23, 17:37 Contributions include artificial radioactive atoms, atomic structure, ribosome research Women contributing their innovative ideas has strengthened the knowledge held in the scientific world. It is important to realise that women in STEM need to be celebrated all year round – they need to be given the recognition they deserve. A total of 60 women have been awarded the Nobel Prize between 1901 and 2022. Specifically looking at the Female Nobel Prize winners in Chemistry – all of whom have changed the way society views women but also puts a spotlight on the progress that can still be made if we have more women in the field of STEM. There have been eight women to receive this prestigious award: Carolyn R. Bertozzi, Emmanuelle Charpentier, Jennifer A. Doudna, Frances H. Arnold, Ada E., Dorothy Crowfoot Hodgkin, Yonath, Irène Joliot-Curie and Marie Curie. This article celebrates their ground-breaking discoveries and contributions to the world of science and is a way to serve as an inspiration to young girls and women in the hope to raise a generation where more women are studying STEM subjects and acquiring high-ranked roles to reduce the gender gap. Nobel Prizes won in- 2022: Carolyn R. Bertozzi was awarded for her development of biorthogonal reactions which has allowed scientists to explore and track biological processes without disrupting the chemistry of the original cells. 2020: Emmanuelle Charpentier and Jennifer Doudna were awarded for their development of a method for high-precision genome editing: CRISPR/Cas9 genetic scissors. They used the immune system of a bacterium, which disables viruses by cutting their DNA up with a type of genetic scissors. The CRISPR/Cas9 genetic scissors has led to many exciting discoveries and new ways to fight against cancer and genetic diseases. 2018: Frances Arnold was awarded because of her work on directed evolution of enzymes. In 1993, Arnold conducted the first directed evolution of enzymes, which are proteins that catalyse chemical reactions. This has led to the manufacturing of environmentally friendly chemical substances such as pharmaceuticals, and the production of renewable fuels. 2009: Ada Yonath was awarded the Nobel Prize for her studies on the structure and functions of the ribosome. In the 1970s, Ada began a project that concluded in her successful mapping of the structure of ribosomes, which consisted of thousands of atoms, using x-ray crystallography. This has been important in the production of antibiotics. 1964: Dorothy Hodgkin was awarded the 1964 Nobel Prize in Chemistry for solving the atomic structure of molecules such as penicillin and insulin, using X-ray crystallography. 1935: Irène Joliot-Curie was awarded for her discovery that radioactive atoms could be created artificially. Written by Khushleen Kaur Related articles: Female Nobel prize winners in physics / African-American women in cancer research Project Gallery
- Unveiling the underreported challenges of endometriosis | Scientia News
Navigating the silence Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Unveiling the underreported challenges of endometriosis 14/07/25, 15:10 Last updated: Published: 25/11/23, 11:22 Navigating the silence What is endometriosis? Endometriosis is a chronic, neuro-inflammatory disease that affects 1 in 10 women in the UK. It is associated with debilitating chronic pelvic pain caused by tissue alike the lining of the womb (uterus) grows outside the uterus in other places like the ovaries and fallopian tubes. Endometriosis can affect any woman of reproductive age with a lifelong impact and can even lead to infertility. During a normal menstrual cycle, the body undergoes monthly hormonal changes. Natural hormonal release causes the uterus lining to thicken in preparation of a fertilised egg. If there is no pregnancy, the uterus lining will break down and bleed and is then released from the body in the form of a period. In endometriosis, tissue alike to the uterus lining tissue behaves in the same way the uterus tissue behaves every month during the menstrual period: building up, breaking down then bleeding. Unlike the womb tissue broken down blood, this blood has no way to leave. The internal bleeding causes inflammation, debilitating pain, and scar tissue formation. The symptoms are: · Painful, heavy, long periods · Infertility · Pain during or after sex · Painful bowel movements · Mood disorders like anxiety or depression · Chronic fatigue · Chronic pelvic pain The challenges of endometriosis Contrary to popular belief, period pain is not normal and can be experienced by those without endometriosis. The main point is if your period pain is interfering with your daily life, please consult your doctor. There are many challenges behind endometriosis from the hard time a patient has to get a diagnosis, to the severely under-research of the condition. Unfortunately, since endometriosis shares symptoms with many other conditions, diagnosis can be delayed and strenuous with recent research showing the average time to get a firm diagnosis being 7.5 years. A 2021 focus group in the Netherlands also shows the many issues with diagnosing endometriosis. Many of the focus group reported having a hard time finding a doctor who does not dismiss their concerns, undermine their pain, or dismiss them with paracetamol or ibuprofen which patients have reported as not strong for the pain endometriosis causes. Little research has been done on how effective paracetamol or ibuprofen is with endometriosis pain, but anecdotal evidence suggests it is not effective. Many of them reported their concerns being unheard, told to come back when they want to have a child and that their pain is normal, so they don’t need to see a doctor. Research for endometriosis is heavily underfunded, women reproductive health disorders are generally underfunded. There is a huge gender disparity with disorders that mostly affect men being over-funded while disorders affecting mostly women being underfunded. A 2018 analysis by the UK Clinical Research Collaboration reported findings of only 2.1% of public funded medical research going towards childbirth and reproductive health which is down from 2.5% in 2014. A 16% funding decrease over a 4-year period. The UK Research and Innovation (UKRI) has funded just over 40 endometriosis-related projects since 2003. However, diabetes which has the same incident rate but affecting both sexes instead of one like endometriosis has been funded 1891 projects in the same time. Just over 1m was funded to 6 of the endometriosis projects compared almost 250 diabetes projected with more than 10 receiving funding greater than £10 million. In 2020 the UK’s All-Part Parliament Group (APPG) report on Endometriosis calls the attention of the cause of the disorder being unclear: Historically, with limited investment in research into women’s health in general, there’s been so little investment in research into endometriosis that we don’t even know what causes it, and without knowing the cause, a cure cannot be found. - APPG The APPG called for more investment into the cause, diagnosis, treatment, and management options of endometriosis. Without investment in research, this condition will rob the next generation of women [of] the education, care, and support they deserve. – APPG With more awareness being brought up by endometriosis charities, researchers and the affected group, the hard work and motivation may pay off soon. Written by Blessing O. Related articles: Breakthrough in endometriosis treatment / Gynaecology Project Gallery
- Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorder | Scientia News
The same condition after all? Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorder 09/07/25, 14:21 Last updated: Published: 20/01/24, 11:38 The same condition after all? Practice and progress in rheumatology The relationship between hypermobile Ehlers-Danlos Syndrome (hEDS) and Hypermobility Spectrum Disorder (HSD) has been hotly debated in recent years, with research being published on a near-constant basis attempting to establish a valid symptomatological or causalogical difference between the two disorders. Now, a paper by Ritelli et al. (2022) threatens to end the savage cycle for all. Using RNA sequencing techniques and immunofluorescence, Ritelli et al. found identical gene expression and cellular characteristics in dermal biopsies from those with both conditions. Through immunofluorescence of biopsies from 20 women with hEDS, 16 women and 4 men with HSD and 40 controls, it was found that the shape and components of the extracellular matrix were greatly different in those with HSD/hEDS in comparison to those in the healthy control group. Abnormalities were discovered in the expression of cadherin-11, snail1, and αvβ3, α5β1 and α2β1 integrins. Integrins mediate the connections between the cell cytoskeleton and extracellular matrix to ensure they stay together, cell-to-cell adhesion is initiated by cadherin-11, and snail1 is localised close to the cyclin-dependent kinase inhibitor 2B (CDKN2B) gene. Snail1 can activate CDKN2B gene products when Snail1 is overexpressed to the point of reaching the general localisation of the CDKN2B domain. This demonstrates that there may be a similar causative link between the widespread inflammation and chronic pain in HSD/hEDS and rheumatoid arthritis. Li et al. (2021) proved that the polarisation of macrophages (white blood cells which destroy foreign products) was carefully controlled by the CDKN2B-AS1/ MIR497/TXNIP axis- the increased activation of which in rheumatoid arthritis catalyses the excessive polarisation of macrophages, which causes the macrophages to attack healthy cells. In rat studies published by Tan et al. (2022), it was found that rats with diabetes and induced sepsis experienced greater intestinal injury that control rats without any medical pathology who experienced induced sepsis. This was demonstrated to be due to interruptions in the miR-3061/Snail1 communication pathway. Research on this phenomenon in humans may elucidate the relevance of snail1 overproduction in hEDS/HSD sufferers to their complex gastrointestinal symptoms. If this pathway works similarly in human models of sepsis or localised GI infection, it may intimate that snail1 overproduction is responsible for the hyperpolarisation of macrophages in response to foreign product detection, which may cause immunological damage in the intestines. However, the relevance of this study to hEDS/HSD should be considered questionable until further human research into this avenue has been completed. The result of this research is that academia can potentially derive a genetic cause of the complex phenotypes demonstrated by sufferers of hEDS/HSD. This can be achieved by visualising the human genome, and testing genes like those above, or those implicated in modulating the activity of the genes above. Once garnered, this genetic evidence will elucidate whether or not hEDS and HSD are one disorder, or both variants of the same disorder with differing genetic causes. This, in turn, could lead to the development of medications or treatments based on genetic phenotype. Written by Aimee Wilson Related articles: Ehlers-Danlos syndrome / Types of movement Project Gallery










