top of page

Search Index

314 results found

  • Maths | Scientia News

    Brush up on your mathematical knowledge with informative articles ranging from statistics and topology, to latent space transformations and Markov chain models. Maths Articles Brush up on your mathematical knowledge with informative articles ranging from statistics and topology, to latent space transformations and Markov chain models. You may also like: Economics , Physics , Engineering and Technology Unlocking the power of statistics What statistics are and its importance Latent spac e transformations Their hidden power in machine learning Topology In action Teaching maths How we can apply maths in our lives How to excel in maths A useful resource for students studying the subject Cognitive decision-making The maths involved Cross-curricular maths The game of life The maths behind trading A comprehensive guide to the Relative Strength Index (RSI) Markov chain models Named after the Russian mathematician, Andrei Markov, who had first studied them

  • Cancer | Scientia News

    Peruse through the current treatment discoveries for one of the deadliest diseases in the world. With key breakthroughs in research, take a deep dive into specific cancers like bone, breast, and ovarian cancer. Learn about cancer biomarker evolution. Cancer Articles Peruse through the current treatment discoveries for one of the deadliest diseases in the world. With key breakthroughs in research, take a deep dive into specific cancers like bone, breast, and ovarian. Learn about cancer biomarker evolution. You may also like: Biology, Medicine Cancer biomarkers What does cancer evolution mean to cancer diagnosis and prognosis? Breast cancer and asbestos A collaboration with the Mesothelioma Centre (Asbestos), US Bone cancer How bone cancer forms Breast cancer in men How this killer disease affects the male population. Article #2 in a series on Rare diseases. Secondary bone cancer What is secondary bone cancer? Cancer treatment A breakthrough drug discovery process Liquid biopsies A novel diagnostic tool Cancer on the move Metastasis Epithelioid hemangioendothelioma A rare type of cancer. Article #4 in a series on Rare diseases. Ovarian cancer A deep dive Prostate cancer A breakthrough in treatment for this disease African-American women in cancer research Celebrating trailblazers in skin cancer, chemotherapy and cervical cancer cells Polly Matzinger A summary of the influential cancer immunologist's works The Hippo signalling pathway Also known as the Salvador-Warts-Hippo (SWH) pathway Illuminating thyroid cancer Shedding light on this disease Canines and cancer What can our canine friends tell us about cancer? Apocrine carcinoma A rare form of breast cancer. Article #9 in a series on Rare diseases. Metastasis caused by immue signals Chromosomal instability initiates immune signals, which lead to metastasis The Emperor of All Maladies by Siddhartha Mukherjee Book review The MAPK/ ERK pathway The mitogen-activated protein kinase/extracellular signal regulated kinase pathway Next

  • An experiment on ochre stars | Scientia News

    Pisaster ochraceus (also known as ‘ochre stars’) is a keystone species and common starfish found in the Pacific Ocean and are very interesting species to research on. They are found mainly in Alaska and Baja California. Their size range from 15 to 36cm in diameter come in different ranges of colours eg: red, yellow, orange and purple. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Designing an experiment on sea stars Last updated: 17/11/24 Published: 25/03/23 Title: How do light and dark rocky surfaces affect the relative fitness of the orange and purple ochre stars? Pisaster ochraceus (also known as ‘ochre stars’) is a keystone species and common starfish found in the Pacific Ocean and are very interesting species to research on. They are found mainly in Alaska and Baja California. Their size range from 15 to 36cm in diameter come in different ranges of colours eg: red, yellow, orange and purple. They are mainly found near rocky shores and found under rocks and in crevices in the low and intertidal zones and they often cluster together. They are simple organisms, they do not have brain or ganglia and around its mouth there is a nerve ring which connects with 5 radial nerves. The population of Pisaster ochraceus that are orange are 6- 28%, whilst majority are purple and researchers have seen that mainly genetic traits cause these species to have different colours whilst they develop. There have also been experiments that examined how colour changes across the geographic range. Figure 1: Image of purple and orange ochre stars The aim of the experiment would be to see how either light or dark rocky surfaces affect the relative fitness of the orange and purple ochre stars, meaning their offspring. The relative fitness shows how much fitness there is in a genotype compared to the maximum fitness. Before starting this experiment, a risk assessment has to be done to make sure it is safe and increases hazard awareness when the experiment is being done. The likelihood, severity and risk has to be looked into during the assessment and how to reduce the risk. One example is, doing the experiment by the shores can be risky due to wind waves and tides and so appropriate footwear has to be worn and the weather should be looked into before going to do this experiment. There are going to be control variables such as: season, quadrat area, number of samples calculated and same equipment being used throughout the whole day so validity would be affected. The uncontrolled variables would be: temperature, pH of seawater and predators that consume Pisaster ochraceus . In order to see how the Pisaster ochraceus are affected, 10 - 15 sites should be chosen and a quadrat can be used (10 metres by 10 metres) on each site and running parallel by using a tape measure on darker rocky surfaces and then after on lighter rocky surfaces. This will be useful as you can see the distribution. Place 15 quadrats randomly over each area in every site to work out the abundance. Within each quadrat, orange and purple Pisaster ochraceus are counted separately to illustrate the set of results with the different colours and the rocky surfaces on a table of results. After collecting the results, this should be shown on a set of tables and then placed on a stratified bar graph showing all the sites, the colour of the starfish (on the x- axis) and results of relative fitness(on the y-axis) showing a good visualisation of the experiment. A paired t-test should be done as we want to see the difference between two variables which are the light and dark rocky surfaces for the same sample which is the colour of the starfish through their means. It should then be concluded by seeing which morph has a higher relative fitness and conclude to see if there is an effect. If the p-value is lesser or equal to the significance value, then the hypothesis should be rejected if the p-value is higher than the significance value the hypothesis should be accepted. Figure 2: Purple and orange ochre stars on rocky surfaces Carrying out an experiment in a natural environment is an advantage as this can be reflected on real life therefore having higher ecological validity. However, doing this experiment can have some disadvantages, even though this is cost-effective and done in a natural environment, we do not know how reliable these results will be because the collection of results can have some inaccuracy. Also, it also has to be understood that many other biotic and abiotic factors can affect this experiment. As it is done in the natural environment there will be issues with Pisaster ochraceus being predated by sea otters or even seagulls which can have an effect on results and also making it less generalisable. Air temperature and water temperature can also have an effect on these species as well and it cannot be controlled which can create issues on results. Also, by using a quadrat, it can be prone to human errors (miscounting or overcounting) and having randomly spaced quadrats, can miss out individual species therefore showing under-representative estimates and results in the populations of the Pisaster ochraceus . More repeats would have to be done throughout the years to collect more accurate results and also be tested by other variables such as temperature, wave exposure and even pH of seawater to see if this also affects relative fitness of Pisaster ochraceus with different colouration. It is important to think about the ethical considerations as it is a natural area and these species organisms live there and it should not be damaged before, during and after the experiment. The creatures must be respected as well as the environment they live in. With many equipment being used, it is vital not to interfere with the organisms, create litter or disturb the habitat as it will be unethical. In conclusion, this experiment is effective as it is done in a natural environment at different sites but it will be time consuming due to changes in weather and working out the abundance over all the sites for a long period of time. By doing the paired t-test, a difference in the two means can be seen and create smaller effects on error from the samples. Written by Jeevana Thavarajah Related articles: An experiment on castor oil / on pendulums REFERENCES The Biological Bulletin. 2022. Color Polymorphism and Genetic Structure in the Sea Star Pisaster ochraceus | The Biological Bulletin: Vol 211, No 3. [online] Available at: [Accessed 18 January 2022]. Animal Diversity Web. 2022. Pisaster ochraceus. [online] Available at: [Accessed 18 January 2022]. Sanctuarysimon.org. 2022. SIMoN :: Species Database. [online] Available at: [Accessed 18 January 2022]. Rgs.org. 2022. Royal Geographical Society - Fieldwork in schools. [online] Available at: [Accessed 18 January 2022].

  • STEM book reviews | Scientia News

    An extensive collection of insightful reviews on the best STEM books available. Whether you're a student looking to deepen your knowledge or something to aid your revision and research, an educator seeking great resources for your classroom, or simply a curious mind passionate about science, technology, engineering, mathematics, medicine and more, you'll find something here to inspire and inform you.  Discover Your Next Great Read Deep Dive into STEM Books Here you can explore an extensive collection of insightful reviews on the best STEM books available. Whether you're a student looking to deepen your knowledge or something to aid your revision and research, an educator seeking great resources for your classroom, or simply a curious mind passionate about science, technology, engineering, mathematics, medicine and more, you'll find something here to inspire and inform you. Our Curated Selections: Intern Blues by Robert Marion, M.D. The Emperor of All Maladies by Siddhartha Mukherjee

  • Technology | Scientia News

    Explore artificial intelligence, a technology that has taken the world by storm. Learn how it is used in fields like agriculture, drug discovery, and outer space. Elsewhere, get to grips with semi-conductor manufacturing, quantum computing, and biotechnology. Technology Articles Explore artificial intelligence, a technology that has taken the world by storm. Learn how it is used in fields like agriculture, drug discovery, and outer space. Elsewhere, get to grips with semi-conductor manufacturing, quantum computing, and biotechnology. You may also like: Maths , Physics , Engineering Fake science websites Ways fake science websites misinform and misguide readers The evolution of artificial intelligence And its greater role in natural language processor technologies Medical biotechnology Technology in the medical sciences Quantum computing What are its applications? Improving agriculture Revolutionising sustainable agriculture through AI AI in drug discovery Using this technology in drug research Digital disinformation With the use of IT cells Digital innovation in rural farming What are the benefits? AI in space What is artificial intelligence used for in outer space? Radiation therapy to treat cancer Revolutionising patient setup in cancer treatment AI: the good, the bad, and the future A Scientia News Biology group collaboration Photonic integration In semiconductor manufacturing Nanomedicine Tiny solutions for big health problems NHS clinical computer scientist Exploring the day-to-day routine in this new field in healthcare Semi-conductor laser technology The recent advancements Code to cure How bioinformatics and technology helped to develop a vaccine for COVID-19 Virtual reality in healthcare Its potential

  • Period of a single pendulum and link to gravity | Scientia News

    For this experiment, the gravitational acceleration was calculated by measuring the time period of a simple pendulum using three different experimental methods; methods 2 and 3 were more similar than method 1. This experiment is primarily for data analysis of the measurements taken of a simple pendulum oscillating freely to determine the acceleration due to gravity. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Outline of an investigation of the period of a single pendulum, and its relation to gravity Last updated: 13/11/24 Last updated: 26/01/23 For this experiment, the gravitational acceleration was calculated by measuring the time period of a simple pendulum using three different experimental methods; methods 2 and 3 were more similar than method 1. This experiment is primarily for data analysis of the measurements taken of a simple pendulum oscillating freely to determine the acceleration due to gravity. This experiment can be repeated but can be carried out in different viscous liquids to see how the extra damping force affects the time period of the oscillation and calculate the g value from it. This can be useful to know as then making pendulum watches to work, say in different environments (such as under water), will be easier to make. It has future implications in industries and/ or technologies that produce related devices. Overall, this experiment was flawed from the beginning from not correctly applying the small angle criteria (in methods 2 and 3). However, there was success for method 1. (Reduced from a full lab report) Written by Siam Sama Related article: Viscosity of castor oil experiment

  • What is pre-diabetes? | Scientia News

    Pre-diabetes is a period before the diagnosis of diabetes mellitus. When level of blood sugar rise above the normal level but it is not high enough to considered as a diabetes. The blood sugar level range between 100-125mg/dl is considered as a pre-diabetes. Causes of pre-diabetes: Obesity Family Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Pre-diabetes Last updated: 14/11/24 Published: 14/06/23 Pre-diabetes is the period before the diagnosis of diabetes mellitus; when the level of blood sugar rises above the normal level but it is not high enough to considered as diabetes. The blood sugar level ranges between 100 and 125mg/dl in pre-diabetes. Causes of pre-diabetes: Obesity Family history Genetic history Lack of physical activity High calories diet Sign and symptoms: Pre-diabetes does not have any sign and symptoms. Though some of these symptoms may appear: Increase thirst Frequent urination Increased appetite Fatigue Frequent infections Prevention: In medical science, ‘prevention is better than cure’. So, pre-diabetes is one of the most preventable diseases. There are several ways to prevent diabetes such as dietary intervention, physical activities and lifestyle modifications. A low carbohydrate diet focuses on protein and non-starchy food. Low carbohydrate diets help in reducing weight; if patients have diabetes already, then it will help to lower medication dose and reducing morbidity overall. APPLICATION OF LOW CARBOHYDRATE DIET FOR PRE-DIABETES: Low carbohydrate diets are sometimes recommended to individuals who are being treated for diabetes. These diets can be safe and effective in helping people with type 2 diabetes to manage their weight, blood glucose level, and risk of heart disease in the short term . A healthy, balanced meal. Overall, medium-low carbohydrate diets (30%) are effective and sustainable in the long term for most people. As well as reducing your overall carbohydrate intake, replace refined carbohydrate (e.g. white bread and white rice) with high fibre, and complex carbohydrates (e.g. oats and sweet potato) where possible. Reducing your intake of ultra-processed foods (e.g. biscuits and cakes) will also help you avoid refined carbohydrates and reduce sweet cravings. When adapting to a new way of eating, it can be tricky to know how your plate should look. Above is a plate which is an example of how your plate might look, depending on whether you are including complex carbohydrates. Altogether, low carbohydrate diets are helpful for prediabetic or diabetic individuals to maintain their sugar level and ultimately reduce the incidence rate of diabetes globally. Written by Chhaya Dhedi Related articles: Diabetes to become an epidemic? / Diabetes drug to treat Parkinson's

  • Evolution of AI and the role of NLP | Scientia News

    AI has long been a controversial topic, with some people fearing its potential consequences. This has been exacerbated by popular culture, with movies such as "The Terminator" and "2001: A Space Odyssey" depicting AI systems becoming self-aware and turning against humans. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The evolution of AI: understanding the role of NLP technologies Last updated: 08/03/25 Published: 08/05/23 Artificial intelligence (AI) has long been a controversial topic, with some people fearing its potential consequences. This has been exacerbated by popular culture, with movies such as The Terminator and 2001: A Space Odyssey depicting AI systems becoming self-aware and turning against humans. Similarly, The Matrix portrayed a dystopian future where AI systems had enslaved humanity. Fast forward to 2023- AI has become a normal part of our everyday life, whether we realise it or not. From virtual assistants like Siri and Alexa to personalised movie and product recommendations, AI-powered technologies have revolutionised the way we interact with technology. AI also plays a critical role in industries such as healthcare, finance, and transportation, with algorithms helping to analyse data, identify patterns, and make predictions that lead to better decision-making. As with any industry, the AI industry is very much prone to evolution. In fact, this is especially relevant for the AI industry, given that it engages user habits to learn and redefine its understanding. This has led to the introduction of unforeseen technologies. One of the most studied and developed AI modelling techniques, Natural Language Processing (NLP), has been particularly placed under focus recently with the emergence of technologies such as Open AI’s ChatGPT, Google’s Gemini (formerly Bard) AI and Microsoft’s Bing AI- known as Copilot. ChatGPT in particular, was one of the first technologies of this kind to garner significant fame. Within its first year of release, the GPT-3 model had more than 10,000 registered developers and over 300 applications built on its application programming interface (API). In addition, Microsoft acquired OpenAI's exclusive license to the GPT-3 technology in 2020, further solidifying its position as a leading language model in the industry. ChatGPT works as an advanced artificial intelligence technology designed to understand and process human language. Built on the GPT-3.5 architecture, it uses NLP to comprehend and generate responses that simulate human conversation. ChatGPT is classified as a large language model, which means it has been trained on vast amounts of data and can generate high-quality text that is both coherent and relevant to the input provided. While concerns have been raised about the potential impact of NLP technologies, there are several reasons why we should not fear their emergence. Firstly, NLP has already enabled a wide range of useful applications that have the potential to improve efficiency, convenience, and accessibility. Furthermore, the development and deployment of NLP technologies is subject to ethical considerations and regulations that aim to ensure their responsible use. NLP technologies are not designed to replace humans, but rather to complement and enhance human capabilities. While some jobs may be impacted by automation, new jobs are likely to emerge that require human skills that are not easily replicated by machines. Ultimately, the impact of NLP technologies depends on how they are developed and used. There are always likely to be risks, but by taking a proactive approach to their development and deployment, we can ensure that they are used to benefit society and advance human progress. Written by Jaspreet Mann Related articles: AI: the good, the bad, and the future / Latent space transformations / Markov chains REFERENCES Hirschberg, Julia, and Christopher D. Manning. “Advances in Natural Language Processing.” Science, vol. 349, no. 6245, July 2015, pp. 261–66. DOI.org (Crossref), https://doi.org/10.1126/science.aaa8685. What Is Natural Language Processing? | IBM. https://www.ibm.com/topics/natural-language-processing. Accessed 1 May 2023. Biswas, Som S. “Role of Chat GPT in Public Health.” Annals of Biomedical Engineering, vol. 51, no. 5, May 2023, pp. 868–69. Springer Link, https://doi.org/10.1007/s10439-023-03172-7. Davenport, T.H. (2018). The AI Advantage: How to Put the Artificial Intelligence Revolution to Work. MIT Press. Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. O'Reilly Media.

  • Engineering | Scientia News

    Recognising the remarkable contributions in the vast field of engineering, including silicon hydrogel contact lenses, wireless electricity, hydrogen cars and many other innovations. Engineering Articles Recognising the remarkable contributions in the vast field of engineering, including silicon hydrogel contact lenses, wireless electricity, hydrogen cars and many other innovations. You may also like: Maths , Physics , Technology Pioneers in biomedical engineering An International Women's Month collab with Kameron's Lab; looking at hydroxyapatite polyethylene, imaging and therapeutic tools for cancer and cancer-cell surfaces Silicon hydrogel contact lenses A case study on this latest innovation in eye vision correction Nikola Tesla and wireless electricity Tesla's dream of Wardenclyffe Tower: why did it not become a reality? Hydrogen cars Are they the future model of cars in the UK? The Titan Submersible Investigating its failure due to its design and engineering

  • Why the Northern Lights were seen in the UK | Scientia News

    The Northern Lights, or Aurora Borealis, are a result of the Sun's immense gravity weakening with increasing distance from its centre, enabling the outermost regions of the Sun's corona to escape as solar wind, which travels towards Earth. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Why were the Northern Lights seen in the UK? Last updated: 13/11/24 Published: 05/04/23 On the 26th and 27th of February 2023, the UK experienced a rare treat - a “Red Alert” indicating a good chance of seeing the Northern Lights, or Aurora Borealis. This captivating event drew people from all over the country, eager to witness one of nature's most awe-inspiring displays. But why is it that opportunities to observe the Northern Lights from the lower latitudes of the UK, France, and Germany are so rare? To truly appreciate the answer to this question, it's important to understand the fascinating science behind the Northern Lights and the 'Northern' aspect that gives them their name. What are the Northern Lights? The Northern Lights, or Aurora Borealis, are a result of the Sun's immense gravity weakening with increasing distance from its centre, enabling the outermost regions of the Sun's corona to escape as solar wind, which travels towards Earth. The boundary at which the solar wind and corona are distinguished is known as the Alfvén surface. This solar wind is a plasma composed of protons, electrons, and other charged particles, which collide with atoms in Earth's atmosphere and excite the electrons in these atoms to higher energy levels. Upon de-excitation, the energy gained via collisions is released by the emission of light. Lucky observers saw the characteristic emerald green hues, which result from oxygen atoms at an altitude of around 100km. Those luckier still may have seen crimson aurorae caused by oxygen atoms at roughly 150km upwards. We observe different colours because the chemical composition of Earth's atmosphere varies with altitude. The Northern Lights. Credit: Evan Boyce Why are they (typically) only visible at the poles? The solar wind travels at millions of kilometres per hour and engulfs the Earth. Equatorial regions are protected by Earth's magnetic field as it deflects the solar wind. However, the magnetic field converges at Earth's magnetic poles, redirecting the charged particles of the solar wind to these high-latitude regions, such as Scandinavia and Canada. The same effect occurs at the southern magnetic pole, only these lights are named "Aurora Australis." The "auroral zone" is the region of Earth's atmosphere associated with this magnetic funnelling of charged particles. It takes the shape of an annulus centred on Earth's north magnetic pole and is usually in the 65°-70° latitude range. Why were they visible in the UK last month? The “auroral zone” is key to understanding this question. It is by no means a fixed or static region. There happened to be two coronal mass ejections (CMEs) which arrived at Earth on consecutive nights. The much greater intensity of these CMEs can give rise to distortions to the magnetic field lines resulting in what is called a geomagnetic storm. This triggers the expansion of the ‘auroral zone’ to lower latitudes, thus allowing the Northern Lights to be seen by UK observers. A graph displaying geomagnetic activity with universal time (UTC). Credit: @aurorawatchuk on Twitter How to know when to look? AuroraWatch UK is a free service run by the Lancaster University Department of Physics, providing alerts on the likelihood of observing the Northern Lights. This likelihood is based on geomagnetic activity measurements - disturbances in Earth’s magnetic field - from a network of magnetometers called SAMNET (Sub-Auroral Magnetometer Network). I will certainly be eagerly awaiting the next “Red Alert” and hoping for clear skies! Written by Joseph Brennan

bottom of page