Search Index
348 results found
- Can a human brain be linked to a computer? | Scientia News
The researchers counted over 100,000 neurons and over a billion connections between them within this small cube of brain tissue. To find all the neurons and reconstruct the neural network, researchers had to slice the mouse brain 25,000 times. The issue is Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Can a human brain be linked to a computer? Last updated: 06/11/24 Published: 28/12/22 Scientists in the US have succeeded in mapping the three-dimensional structure of the network of neurons in one cubic millimetre of mouse brain- a feat that would require two petabytes of storage. The human brain contains approximately 100 billion neurons, which is one million times the number of neurons found in a cubic millimetre of mouse brain. The researchers counted over 100,000 neurons and over a billion connections between them within this small cube of brain tissue. To find all the neurons and reconstruct the neural network, researchers had to slice the mouse brain 25,000 times. The issue is that the amount of data to store would kill any single computer. Memory and experiences that would have defined people later would be lost if they tried to store their minds too early. Using a computer too late may result in the accumulation of a mind with dementia, which would not work so well. Human tissue would have to be cut into zillions of thin slices using techniques compatible with dying and cutting. Local electrical changes that travel down dendrites and axons allow neurons to communicate with one another. However, when reconstructing the 3D structure, this may not be possible. After we die, our brains undergo significant chemical and anatomical changes. At the age of 20, they begin to lose 85,000 neurons per day due to apoptosis, or programmed cell death. Many memories that would have shaped a person later would be lost if he or she tried to store their mind too early. There are numerous steps involved in developing a computer capable of storing and processing human-level intelligence. It may be impossible for an artificial intelligence to produce sensations and actions identical to those provided and produced by your biological body. Bots are susceptible to hacking and hardware failure. Connecting sensors to the AI's digital mind would also be difficult. Written by Jeevana Thavarajah Related articles: The evolution of AI / Brain metastasis / AI in genetic diagnoses
- DFNB9: The first deafness ever treated by gene therapy | Scientia News
DFNB9 affects 1 to 16 newborns every 50,000 Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link DFNB9: The first deafness ever treated by gene therapy 09/07/25, 14:02 Last updated: Published: 05/09/24, 10:03 DFNB9 affects 1 to 16 newborns every 50,000 Two (TWO!) AAV gene therapies have restored hearing in deaf patients! Scientists have corrected DFNB9 deafness! These are headlines you have likely read last January. The technology making this achievement possible rightfully took the spotlight (e ven I chimed in! ). But what is DFNB9 deafness in the first place? Why do DFNB9 patients lose their hearing? In a nutshell, DFNB9 deafness is the failure of the ear to share what it has heard with the brain because of mutations in the OTOF gene. Do you want to learn more? Let me explain. Medical and genetic definitions of DFNB9 deafness DFNB9 is a type of genetic deafness. It affects 1 to 16 newborns every 50,000, and it accounts for 2 to 8% of all cases of genetic deafness. DFNB9 is (take a deep breath!) an autosomal recessive prelingual severe-to-profound non-syndromic sensorineural hearing loss. That’s a mouthful of a definition, I agree. Let’s break it down. In medical terms, DFNB9 deafness is: severe — sounds must be louder than 70 dB (think of a vacuum cleaner) to be heard — to profound — sounds must be even louder, over 90 dB (picture a lawn mower), prelingual, that is hearing is lost before developing language skills (2–3 years of age) not associated with other pathologies (non-syndromic). Geneticists describe DFNB9 as an autosomal recessive disease: the gene mutated is not on the sex chromosomes (but on the autosomes) and both alleles must be mutated for the disease to appear (recessive). This gene is OTOF . OTOF encodes otoferlin, a protein that enables the cells detecting sounds to communicate with neurons. As mutations in OTOF disrupt this dialogue, DFNB9 is classified as a sensorineural type of deafness. Otoferlin enables inner hair cells to speak to neurons How does otoferlin enable us to hear? This question needs a few notions on the two main cell types involved in hearing: auditory hair cells and primary auditory neurons. Auditory hair cells are the sound detector. These cells are surmounted by a structure resembling a tuft of hair, the hair bundle. Sounds bend the hair bundle, opening its ion channels; positive ions rush into the cells generating electrical signals that travel across the cell. Inner hair cells — one of the two types of auditory cells — transmit these signals to the primary auditory neurons ( Figure 1 ) The primary auditory neurons are the first station of the nervous pathway between the ear and the brain. Some primary auditory neurons (type I) extend their dendrites to the inner hair cells and listen. The information received is analysed and sent to the brain along the auditory nerve ( Figure 2 ). The synapse is where inner hair cells speak to primary auditory neurons. Otoferlin is essential for this dialogue: without it, inner hair cells cannot share what they have heard. Otoferlin, the calcium sensor At the synapse, synaptic vesicles are placed just beneath the membrane, like Formula 1 cars lined up the grid waiting for the race to start. In response to a sound, electrical signals trigger the opening of calcium channels and calcium ions (Ca2+) rush in. The sudden increase in Ca2+ is the biological equivalent of the “lights out” signal in Formula 1: as soon as Ca2+ enters, the synaptic vesicles rapidly fuse with the membrane. This event releases glutamate onto the primary auditory neurons ( Figure 3 ). The information in the sound is on its way to the brain. In the inner hair cells, otoferlin enables synaptic vesicles to sense changes in Ca2+. Anchored to the vesicles by its tail, otoferlin extends into the cell multiple regions with high affinity to Ca2+ (C2 domains) ( Figure 4 ). The many roles of otoferlin at the synapse Otoferlin is essential throughout the lifecycle of synaptic vesicles (Figure 5). This is a brief overview of its main roles at the synapse: 1 — Docking : Otoferlin helps position vesicles filled with glutamate at the synapse 2 — Priming : Otoferlin interacts with SNARE proteins, which are essential for the fusion with the membrane, and the vesicles become ready to rapidly fuse 3 — Fusion : electrical signals, triggered by sounds, open Ca2+ channels; Otoferlin senses the increase in Ca2+ and prompts the vesicles to fuse with the cell membrane, releasing glutamate 4 — Recycling : Otoferlin helps clear fused vesicles and recycle their components Imperfect knowledge can be enough knowlege (sometimes) Despite years of studies, the functions of otoferlin at the inner hair cell synapse are still elusive. Even more puzzling is the synapse of inner hair cells as a whole. Researchers are captivated and baffled by its mysterious architecture and properties (we would need a new article just to scratch the surface of this topic!). But let’s not forget that we now have two gene therapies to improve the deafness caused by mutations in the OTOF gene. These breakthroughs should encourage us: even with imperfect knowledge, we can (at least in some cases) still develop impactful treatments for diseases. Written by Matteo Cortese, PhD REFERENCES Manchanda A, Bonventre JA, Bugel SM, Chatterjee P, Tanguay R, Johnson CP. Truncation of the otoferlin transmembrane domain alters the development of hair cells and reduces membrane docking. Mol Biol Cell. 2021 Jul 1;32(14):1293–1305. Morton CC, Nance WE. Newborn hearing screening — a silent revolution. N Engl J Med. 2006 May 18;354(20):2151–64. Johnson CP, Chapman ER. Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion. J Cell Biol. 2010 Oct 4;191(1):187–97. Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D, Frank T, Tarantino LM, Bailey JS, Strenzke N, Brose N, Müller U, Reisinger E, Moser T. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci. 2010 Jul;13(7):869–76. Qi J, Tan F, Zhang L, Lu L, Zhang S, Zhai Y, Lu Y, Qian X, Dong W, Zhou Y, Zhang Z, Yang X, Jiang L, Yu C, Liu J, Chen T, Wu L, Tan C, Sun S, Song H, Shu Y, Xu L, Gao X, Li H, Chai R. AAV-Mediated Gene Therapy Restores Hearing in Patients with DFNB9 Deafness. Adv Sci (Weinh). 2024 Jan 8:e2306788. Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell. 2006 Oct 20;127(2):277–89 Vona B, Rad A, Reisinger E. The Many Faces of DFNB9: Relating OTOF Variants to Hearing Impairment. Genes (Basel). 2020 Nov 26;11(12):1411. Project Gallery
- Investigating the interplay of hormones and the microbiome | Scientia News
Known as microbial endocrinology, it is a complex field Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Investigating the interplay of hormones and the microbiome 10/07/25, 10:19 Last updated: Published: 08/11/24, 12:00 Known as microbial endocrinology, it is a complex field The microbiome The human body hosts a vast ecosystem of bacteria, with trillions crawling on our skin, colonising our gut, and living throughout our bodies. Most of these microbes serve to protect us against infections influencing our metabolism and even our behaviour. However, scientists have started to question the mechanisms by which these bacteria affect our bodily functions and characteristics. Scientists have studied these communities of microorganisms residing within our bodies and the genes they contain, yielding new and exciting perspectives… …Welcome to the human microbiome. The microbiome is the dynamic community of microorganisms (like fungi, bacteria and viruses) that exist in a particular environment. In humans, the term is most often used to describe the collection of microorganisms that inhabit a particular body area, such as the gastrointestinal tract, mouth or skin. While a person’s core microbiome is established within the first few years of life, its composition can shift over time in response to factors like medication, such as potent antibiotics and environmental factors. Researchers have uncovered that the gastrointestinal microbiota can influence some physiological processes, including a direct line of communication between the gut and the brain. But what facilitates this dialogue? What mechanisms enable the gut to relay signals to the brain? The answer is hormones. Hormones and the endocrine system The endocrine system is a network of glands that produce and release chemical messengers known as hormones. They travel via the bloodstream and bind to specific receptors on their target tissues. This binding of hormones to their receptors triggers a response in the target tissue. For instance, during stressful situations, epinephrine (also known as adrenaline) is produced by the adrenal medulla, the inner region of the adrenal glands. This hormone, released into the bloodstream, acts on target tissues such as the heart, where it increases heart rate. Hormones regulate most of the body’s vital functions through their release. Some of these crucial processes include growth, metabolism, and reproduction. In the following sections, however, we specifically focus on how hormones influence the microbiome. The interactions between hormones and the microbiome Exploring the relationship between hormones and the microbiome is known as microbial endocrinology; it is a complex field because there are numerous interactions to account for, and the effects of each one can have lasting impacts on human physiology. For example, epinephrine and norepinephrine can lead to more bacteria, notably E. coli and Pseudomonas aeruginosa , signifying that imbalance could harm humans. Also, parts of the host, ranging from mood to gender, impact hormones, bacterial presence and activity ( Figure 3 ). An emerging area of microbial endocrinology is how the microbiome and sex hormones engage with each other in disease and female health. One paper noted that disorders from metabolic syndrome (MetS) to type 2 diabetes (T2D) have distinctions in the levels of sex hormones and gut microbiota, indicating that they are essential to understanding in developing those conditions. The influence of gut microbiota on sex hormones can occur through various mechanisms, such as bacteria controlling the activity and expression of endocrine receptors and even bacteria metabolising sex hormones; this knowledge can help create treatments against polycystic ovarian syndrome and ovarian cancer, among other diseases that usually impact females due to gut microbiome imbalances ( Figure 4 ). Another part of microbial endocrinology being researched is how the microbiome impacts human growth. In one study involving adult male mice, decreased growth hormone (GH) led to undeveloped microbiomes, while surplus GH was linked to an expanded microbiome; this depicts that bacteria influences development via the growth hormone-insulin-like growth factor 1 (GH-IGF-1) axis; maintaining a steady dynamic between the microbiome and this axis is vital for development ( Figure 5 ), particularly in children. In puberty, hormones and the gut microbiome interact, as observed in obesity and precocious puberty. Hence, a deeper awareness of the bacteria and sex hormones during puberty is crucial to designing targeted medicines for growth disorders. Moreover, patients with GH-secreting pituitary adenoma (GHPA) have modified gut microbiota, like increased Alistipes shahii and Odoribacter splanchnicus . Still, more research is needed to investigate this. Conclusion The microbiome refers to the millions of microorganisms on and within the human body that influence various physiological functions ranging from digesting food to outcompeting pathogens for resources. Also, the microbiome can affect the endocrine system, which consists of hormones that control glucose and reproduction, among other processes. This bridge, known as microbial endocrinology, has critical applications for understanding women’s health and growth disorders; this emerging area is growing, so it can address knowledge gaps in diseases like cancer and even improve other medical treatments. Written by Sam Jarada and Fozia Hassan The interactions between hormones and the microbiome, and Conclusion sections by Sam The microbiome, and Hormones and the endocrine system sections by Fozia Related articles: The gut microbiome / Dopamine and the gut / The power of probiotics / Vitamins REFERENCES “The Human Microbiome and Its Impacts on Health - PWOnlyIAS.” PWOnlyIAS , 18 Jan. 2024, pwonlyias.com/current-affairs/gut-microbiome-and-health/ . Accessed 17 Oct. 2024. Mittal, Rahul, et al. “Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis.” Journal of Cellular Physiology , vol. 232, no. 9, 10 Apr. 2017, pp. 2359–2372, www.ncbi.nlm.nih.gov/pmc/articles/PMC5772764/ , https://doi.org/10.1002/jcp.25518 . Accessed 17 Oct. 2024. Neuman, Hadar, et al. “Microbial Endocrinology: The Interplay between the Microbiota and the Endocrine System.” FEMS Microbiology Reviews , vol. 39, no. 4, 1 July 2015, pp. 509–521, academic.oup.com/femsre/article/39/4/509/2467625 , https://doi.org/10.1093/femsre/fuu010 . Hiller-Sturmhöfel S, Bartke A. The Endocrine System: An Overview. Alcohol Health and Research World. 2024;22(3):153. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6761896/ Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews [Internet]. 2015 Feb 19 [cited 2024 Sep 18];39(4):509–21. Available from: https://academic.oup.com/femsre/article/39/4/509/2467625?login=false Jose Antonio Santos-Marcos, Mora-Ortiz M, Tena-Sempere M, José López-Miranda, Camargo A. Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biology of Sex Differences. 2023 Feb 7;14(1). He S, Li H, Yu Z, Zhang F, Liang S, Liu H, et al. The Gut Microbiome and Sex Hormone-Related Diseases. Frontiers in Microbiology. 2021 Sep 28;12. Siddiqui R, Makhlouf Z, Alharbi AM, Alfahemi H, Khan NA. The Gut Microbiome and Female Health. Biology [Internet]. 2022 Nov 1;11(11):1683. Available from: https://www.mdpi.com/2079-7737/11/11/1683 Jensen E, Young JA, Jackson Z, Busken J, List EO, Ronan O’Carroll, et al. Growth Hormone Deficiency and Excess Alter the Gut Microbiome in Adult Male Mice. Endocrinology [Internet]. 2020 Feb 26 [cited 2023 Nov 9];161(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341558/ Jensen EA, Young JA, Mathes SC, List EO, Carroll RK, Kuhn J, et al. Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Hormone & IGF Research. 2020 Aug;53-54:101333. Project Gallery
- Key discoveries in the history of public health | Scientia News
To begin, there was the Humoral Theory, which looked at how disease was caused by gaps in fluids/humours which were: blood, yellow bile, black bile and phlegm, which equated to the elements of air, fire, earth and water respectively. The imbalance can come from habits like overeating Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Key historical events and theories in public health Last updated: 17/11/24 Published: 10/02/23 Introduction Now more than ever, public health has become crucial, which looks at promoting health and preventing disease within a society. There have been numerous events and concepts that have helped shape our current health systems today because without them, it is possible that our health systems would not have advanced without previous knowledge to evolve from. This article will focus on certain key events and concepts. Humoral Theory (Ancient Greek and Roman times) To begin, there was the Humoral Theory, which looked at how disease was caused by gaps in fluids/humours which were: blood, yellow bile, black bile and phlegm, which equated to the elements of air, fire, earth and water respectively. The imbalance can come from habits like overeating and too little/much exercise or external factors such as the weather. This theory was thought to have originated from the Hippocratic Corpus, a compilation of 60 medical documents written during the Ancient Greek era by Hippocrates. Although this theory as we know now is flawed, it did provide a foundational understanding of the human body and was utilised in public health for centuries before being subsequently discredited for the Germ Theory established during the mid-19th century. Miasma Theory (Ancient Greek era to the 19th century) Another theory replaced by Germ Theory was the Miasma theory, which stated that diseases like the plague and cholera were spread due to toxic vapours from the ground/decomposing matter. This theory along with the Humoral theory was accepted for thousands of years since the Ancient Greek era. With regards to the cholera outbreaks in the Victorian era, John Snow’s theory of polluted water causing cholera was initially not accepted by the scientific community during his death in 1858. Eventually though, his theory became accepted when Joseph Bazalgette worked to fix London’s sewage to prevent more deaths by cholera. This event with the Germ Theory led to Miasma and Humoral theories to be disproved, although they provided foundational understanding of how diseases spread. The discovery of vaccines (late 18th century) Aside from theories such as the four humors from above, there were concepts or discoveries that advanced public health measures such as vaccination, which eradicated smallpox and is still used today to prevent the severity of diseases such as COVID-19, influenza and polio. The origins of successful vaccines could be traced back to Edward Jenner who in 1796, retrieved samples from cowpox lesions from a milkmaid because he noticed that contracting cowpox protected against smallpox. With this in mind, he inoculated an 8 year old boy and after this, the boy developed mild symptoms, but then became better. Without this event, it is likely that the human population would significantly decrease as there is more vulnerability to infectious diseases and public health systems being weaker or less stable. Image of a COVID-19 injection. Germ Theory (19th century) As for current scientific theories relating to public health, there is the widely accepted Germ Theory by Robert Koch during the 19th century in the 1860s, stating that microorganisms can cause diseases. He established this theory by looking at cow’s blood through a microscope to see that they died from anthrax and observed rod-shaped bacteria with his hypothesis that they caused anthrax. To test this, he infected mice with blood from the cows and the mice also developed anthrax. After these tests, he developed postulates and even though there are limitations to his postulates at the time like not taking into account prions or that certain bacteria do not satisfy the postulates, they are vital to the field of microbiology, in turn making them important to public health. The establishment of modern epidemiology (19th century) Another key concept for public health is epidemiology, which is the study of the factors as well as distribution of chronic and infectious diseases within populations. One of epidemiology’s key figures is John Snow, who explored the cholera epidemics in London 1854, where he discovered that contaminated water from specific water pumps was the source of the outbreaks. Moreover, John Snow’s work on cholera earned him the title of the “father of modern epidemiology” along with his work providing a basic understanding of cholera. Therefore, this event among others has paved the way for health systems to become more robust in controlling outbreaks such as influenza and measles. Conclusion Looking at the key events above, it is evident that each of them has played an essential role in building the public health systems today through the contributions of the scientists. However, public health, like any other science, is constantly evolving and there are still more future advancements to look forward to that can increase health knowledge. Written by Sam Jarada Related articles: Are pandemics becoming less severe? / Rare zoonotic diseases / How bioinformatics helped with COVID-19 vaccines REFERENCES Lagay F. The Legacy of Humoral Medicine. AMA Journal of Ethics. 2002 Jul 1;4(7). Earle R. Humoralism and the colonial body. Earle R, editor. Cambridge University Press. Cambridge: Cambridge University Press; 2012. Halliday S. Death and miasma in Victorian London: an obstinate belief. BMJ. 2001 Dec 22;323(7327):1469–71. Riedel S. Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University Medical Center). 2005 Jan 18;18(1):21. National Research Council (US) Committee to Update Science, Medicine, and Animals. A Theory of Germs. Nih.gov. National Academies Press (US); 2017. Sagar Aryal. Robert Koch and Koch’s Postulates. Microbiology Notes. 2022. Tulchinsky TH. John Snow, Cholera, the Broad Street Pump; Waterborne Diseases Then and Now. National Library of Medicine. Elsevier; 2018. p. 77–99.
- The cost of coats: celebrating 55 years of vicuña conservation | Scientia News
Vicuñas are members of the camelid family Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The cost of coats: celebrating 55 years of vicuña conservation 11/07/25, 10:02 Last updated: Published: 09/10/24, 14:03 Vicuñas are members of the camelid family This is article no. 1 in a series on animal conservation. Next article: Conserving the California condor . Is the softest coat in the world worth the near-extinction of a species? Just ask a vicuña, the wild cousin of llamas and alpacas. After being widely hunted in South America in the mid-20th century, the vicuña population thrives. Their recovery is considered one of the earliest successes in modern wildlife conservation, setting a precedent for sustainable development. This October marks the 55th anniversary of the first international agreement to conserve these furry friends. In its honour, here is the story of vicuña conservation. What are vicuñas? Vicuñas have a unique biology. They are members of the camelid family ー which includes llamas, alpacas, and camels. Vicuñas live in high-altitude arid grasslands in South America (Figure 1). Their families consist of one alpha male, multiple females, and their offspring – while bachelor males form their own groups. Unlike other camelids, vicuña families remain together for most of the year. Vicuñas are herbivores with characteristic grazing and defecating behaviours that shape the surrounding plant community. Therefore, their ecological role cannot be underestimated. How vicuñas nearly went extinct However, vicuñas are hunted by humans because their wool is the finest and softest in the world. They are difficult to domesticate, and their habitat has no hiding spots, so they are easy poaching targets. Their intricate social structure means killing one vicuña has unforeseen impacts on the rest of the population. Consequently, expensive wool comes at the expense of a fascinating species. Demand for ultra-fine vicuña wool made hunting the animals a lucrative business in South America. Although 15th-16th century Inca rulers wore high-end clothing made from vicuña wool, it was usually harvested without killing the animals. European colonisation in the 19th-20th centuries opened vicuña wool to a wealthy international market, making poaching more popular and reckless than under Inca rule. These inconsiderate hunting practices continued after South American countries gained independence. As the luxurious wool remained in demand, the vicuña population decreased by over 99% between 1940 and 1965. Conservation policies saved the vicuñas South American national governments soon realised that indiscriminate vicuña hunting had to stop. As well as being ecologically important, vicuñas should not be allowed to go extinct because of their economic value. Peru had the largest proportion of the vicuña population, so in 1966 its government set up a nature reserve called Pampa Galeras. Creating this reserve involved negotiating with rural communities so that both people and vicuñas benefitted, for example, by employing locals at the reserve. This was one of the earliest examples of what is now known as sustainable development, which provides rural communities with a way of life that works alongside ecosystems rather than damaging them. Scientists found that vicuñas changed their social structures inside Pampa Galeras to maximise reproductive success. A 1987 study suggested that because females had more time to graze without the constant threat of predators and poachers, their reproductive success was higher. The creation of this reserve was the first of many successful steps South America took in the 1960s towards vicuña recovery. In October 1969, Argentina, Chile, Ecuador, and Bolivia joined Peru in the efforts to conserve vicuñas. Their Convention for the Conservation of the Vicuña banned international trade and massively restricted hunting. Since the convention successfully led to a rise in vicuña numbers, it was modified in 1979 so that sustainable vicuña wool could be sold. Meanwhile, conservation laws were being established in the United States and European Union, the wildlife trade regulator CITES was established, and public awareness about the biodiversity crisis was rising. This international effort saved vicuñas from extinction, and today there are 350,000 to 500,000 of them ( Figure 2 ). Vicuñas were classified as ‘least concern’ for conservation by the International Union for Conservation of Nature in 2018. Climate change, mite infestations, and competition with livestock are affecting the population today – but to a much smaller extent than poaching was. Thus, vicuñas are back to freely roaming the Andes. Conclusion Conserving the vicuña relied on political willpower and community involvement. In the 55 years since, ecologists have used this charismatic and distinctive animal to galvanise wildlife conservation worldwide. The vicuña’s story should also remind us that what we wear has financial and ecological costs. Written by Simran Patel Related articles: Conservation of marine igunanas / Gal á gapos tortoises REFERENCES Acebes, P., Wheeler, J., Baldo, J.L., Tuppia, P., Lichtenstein, G., Hoces, D. & Franklin, W.L. (2018) Vicuna: Vicugna vicugna . The IUCN Red List of Threatened Species 2018 . Available from: https://ri.conicet.gov.ar/handle/11336/178499 (Accessed 12th September 2024). Bosch, P.C. & Svendsen, G.E. (1987) Behavior of Male and Female Vicuna (Vicugna vicugna Molina 1782) as It Relates to Reproductive Effort. Journal of Mammalogy . 68 (2): 425–429. Available from: https://doi.org/10.2307/1381491 (Accessed 23rd September 2024). González, B. et al. (2019) Phylogeography and Population Genetics of Vicugna vicugna : Evolution in the Arid Andean High Plateau. Frontiers in Genetics . 10. Available from: https://doi.org/10.3389/fgene.2019.00445 (Accessed 22nd September 2024). Karandikar, H., Donadio, E., Smith, J.A., Bidder, O.R. & Middleton, A.D. (2023) Spatial ecology of the Vicuña ( Lama vicugna ) in a high Andean protected area. Journal of Mammalogy . 104 (3): 509–518. Available from: https://doi.org/10.1093/jmammal/gyad018 (Accessed 11th September 2024). Lyster, S. (1985) VICUNA. In: International Wildlife Law: An Analysis of International Treaties concerned with the Conservation of Wildlife . Cambridge: Cambridge University Press: 88–94. Reider, K.E. & Schmidt, S.K. (2021) Vicuña dung gardens at the edge of the cryosphere. Ecology . 102 (2): 1–3. Available from: https://www.jstor.org/stable/26998110 (Accessed 11th September 2024). Vilá, B. & Arzamendia, Y. (2022) Weaving a vicuña shawl. Pastoralism . 12 (1): 46. Available from: https://doi.org/10.1186/s13570-022-00260-6 (Accessed 11th September 2024). Wakild, E. (2020) Saving the Vicuña: The Political, Biophysical, and Cultural History of Wild Animal Conservation in Peru, 1964–2000. The American Historical Review . 125 (1): 54–88. Available from: https://doi.org/10.1093/ahr/rhz939 (Accessed 11th September 2024). Yacobaccio, H. (2009) The Historical Relationship Between People and the Vicuña. In: Gordon, I.J., ed. The Vicuña: The Theory and Practice of Community Based Wildlife Management . Boston, MA: Springer US: 7–20. Project Gallery
- A new tool to diagnose: liquid biopsies | Scientia News
Testing cancerous tumours Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link A new tool to diagnose: liquid biopsies 08/07/25, 16:15 Last updated: Published: 15/01/24, 23:48 Testing cancerous tumours Liquid biopsies are an example of integrating next-generation sequencing to diagnose and study tumours using only blood or other fluid samples rather than solid tissue. These biopsies are significant in modern medicine, particularly in treating cancer, as they enable the earlier detection of cancers in a less invasive manner. In this article, I aim to explore liquid biopsies, their role in disease detection and issues which arise from their usage. A liquid biopsy is a test which detects cancerous tumours from the pieces of tumour that break off and circulate in the bloodstream. A liquid biopsy involves a simple blood test and analysis in the lab with a machine that separates blood cells from the plasma, allowing a pathologist to examine the fluid and look for biomarkers. These include circulating tumour cells (CTC) or circulating tumour DNA (ctDNA). CTCs are cancer cells that disseminate from a tumour and travelling in the bloodstream, whereas ctDNA is a DNA fragment from the tumour circulating in the blood. See Figure 1 for a diagram summarising this process in more detail. Finding these biomarkers shows evidence of a malignant tumour, possibly revealing its stage of development and potential metastases. Oncologists use this information to form the basis of cancer prognosis. Furthermore, genetic data from these tests provides information on suitable and effective treatments specific to the patient. In particular, the suitability for targeted therapies, which target specific genes or proteins within the cancer. Furthermore, it can monitor how well a treatment is working by seeing if the tumour has stopped growing after treatment. Finally, it can be used to predict and help prevent recurrence of cancer or progression of cancer by detecting minimal residual disease (where a small number of cancer cells remain in the body after treatment). Liquid biopsies are perhaps better and more advantageous than normal biopsies, as the method is quicker without requiring surgical intervention. In addition, liquid biopsies provide a more comprehensive tissue profile by taking tumour heterogeneity into account. This includes revealing more information about genetic variations, monitoring clonal evolution, assessing treatment resistance, and aiding in the customisation of targeted therapies. This means a more comprehensive view is provided compared to tissue biopsies, which do not represent the entire genetic diversity of a tumour. Liquid biopsies excel in overcoming these limitations by providing a systematic and dynamic assessment of the entire tumour’s genetic diversity. Unlike tissue biopsies, which may miss subclones, liquid biopsies offer a more comprehensive understanding of the overall tumour, making them a valuable tool for precision oncology. The process is also minimally invasive and only causes minimal pain. While liquid biopsies offer a less invasive means of monitoring diseases, their sensitivity and specificity in detecting biomarkers, such as circulating tumour DNA (ctDNA) or circulating tumour cells (CTCs), might vary, leading to potential false positives or negatives. Additionally, the quantity and quality of biomarkers present in bodily fluids can fluctuate, impacting the reliability of liquid biopsy results for consistent monitoring. Furthermore, the associated cost of analysing liquid biopsy samples and the technology required for accurate detection can pose financial constraints for widespread implementation in healthcare systems. See Figure 2 which summarises the advantages and disadvantages of each method. Currently, there are a few liquid biopsy tests approved by the FDA to detect cancer within a patient. One example is the “Guardant 360 CDx”, approved for use in people with non-small cell lung cancer (NSCLC). Another example is the “Foundation One liquid CDx”, which is approved for use in people with a range of cancers such as NSCLC, prostate, ovarian and breast cancer. However, more research is needed to clinically evaluate the efficacy of liquid biopsies when compared to tissue biopsies. Nevertheless, liquid biopsies show a positive prospect for cancer diagnosis. Furthermore, liquid biopsies have also been used outside of cancer, such as in cardiovascular conditions such as myocardial infarction. In myocardial infarction, specific miRNA signatures released during myocardial necrosis provide accurate early detection of myocardial infarction. Further highlighting the multilevel potential of liquid biopsies. One of the main ethical concerns surrounding liquid biopsies involves the revealing of sensitive genetic information about a patient, encompassing medical history, and genetic identity, and potentially impacting familial relationships and legal affairs. This raises critical issues regarding privacy, consent, and the secure storage of such sensitive data. Additionally, challenges surrounding standardisation, cost-effectiveness, and the establishment of robust regulatory frameworks for the handling and storage of this genetic information further underscore the ethical complexities and necessity for stringent protocols in the implementation and management of liquid biopsy technologies. To conclude, it is clear that liquid biopsies have a lot of potential in diagnosing patients and, therefore, treating patients by aiding clinical decisions made by healthcare professionals. It has proven to be useful not just in diagnosing cancer but also in cardiovascular conditions such as myocardial infarction. The process has the potential to improve future patient outcomes. However, for this to happen, issues such as costs and ethics must be addressed so that liquid biopsies can be utilised more effectively in clinical practice. Written by Harene Elayathamby References: professional, C.C. medical Liquid biopsy: What it is & procedure details , Cleveland Clinic . Available at: https://my.clevelandclinic.org/health/diagnostics/23992-liquid-biopsy (Accessed: 19 December 2023). A tale of two biopsies: Liquid biopsy vs tissue biopsy (no date) Biochain Institute Inc. Available at: https://www.biochain.com/blog/a-tale-of-two-biopsies-liquid-biopsy-vs-tissue-biopsy/ (Accessed: 19 December 2023). Adhit, K.K. et al. (2023) ‘Liquid biopsy: An evolving paradigm for non-invasive disease diagnosis and monitoring in medicine’, Cureus [Preprint]. doi:10.7759/cureus.50176. Mannelli, C. (2019) ‘Tissue vs liquid biopsies for cancer detection: Ethical issues’, Journal of Bioethical Inquiry , 16(4), pp. 551–557. doi:10.1007/s11673-019-09944-y. Figures: Journey of a liquid biopsy (no date) Diagnostics . Available at: https://diagnostics.roche.com/global/en/article-listing/infographic-journey-of-a-liquid-biopsy.html (Accessed: 19 December 2023). A tale of two biopsies: Liquid biopsy vs tissue biopsy (no date) Biochain Institute Inc. Available at: https://www.biochain.com/blog/a-tale-of-two-biopsies-liquid-biopsy-vs-tissue-biopsy/ (Accessed: 19 December 2023) Project Gallery
- An experiment on ochre stars | Scientia News
Pisaster ochraceus (also known as ‘ochre stars’) is a keystone species and common starfish found in the Pacific Ocean and are very interesting species to research on. They are found mainly in Alaska and Baja California. Their size range from 15 to 36cm in diameter come in different ranges of colours eg: red, yellow, orange and purple. Go back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Designing an experiment on sea stars Last updated: 17/11/24 Published: 25/03/23 Title: How do light and dark rocky surfaces affect the relative fitness of the orange and purple ochre stars? Pisaster ochraceus (also known as ‘ochre stars’) is a keystone species and common starfish found in the Pacific Ocean and are very interesting species to research on. They are found mainly in Alaska and Baja California. Their size range from 15 to 36cm in diameter come in different ranges of colours eg: red, yellow, orange and purple. They are mainly found near rocky shores and found under rocks and in crevices in the low and intertidal zones and they often cluster together. They are simple organisms, they do not have brain or ganglia and around its mouth there is a nerve ring which connects with 5 radial nerves. The population of Pisaster ochraceus that are orange are 6- 28%, whilst majority are purple and researchers have seen that mainly genetic traits cause these species to have different colours whilst they develop. There have also been experiments that examined how colour changes across the geographic range. Figure 1: Image of purple and orange ochre stars The aim of the experiment would be to see how either light or dark rocky surfaces affect the relative fitness of the orange and purple ochre stars, meaning their offspring. The relative fitness shows how much fitness there is in a genotype compared to the maximum fitness. Before starting this experiment, a risk assessment has to be done to make sure it is safe and increases hazard awareness when the experiment is being done. The likelihood, severity and risk has to be looked into during the assessment and how to reduce the risk. One example is, doing the experiment by the shores can be risky due to wind waves and tides and so appropriate footwear has to be worn and the weather should be looked into before going to do this experiment. There are going to be control variables such as: season, quadrat area, number of samples calculated and same equipment being used throughout the whole day so validity would be affected. The uncontrolled variables would be: temperature, pH of seawater and predators that consume Pisaster ochraceus . In order to see how the Pisaster ochraceus are affected, 10 - 15 sites should be chosen and a quadrat can be used (10 metres by 10 metres) on each site and running parallel by using a tape measure on darker rocky surfaces and then after on lighter rocky surfaces. This will be useful as you can see the distribution. Place 15 quadrats randomly over each area in every site to work out the abundance. Within each quadrat, orange and purple Pisaster ochraceus are counted separately to illustrate the set of results with the different colours and the rocky surfaces on a table of results. After collecting the results, this should be shown on a set of tables and then placed on a stratified bar graph showing all the sites, the colour of the starfish (on the x- axis) and results of relative fitness(on the y-axis) showing a good visualisation of the experiment. A paired t-test should be done as we want to see the difference between two variables which are the light and dark rocky surfaces for the same sample which is the colour of the starfish through their means. It should then be concluded by seeing which morph has a higher relative fitness and conclude to see if there is an effect. If the p-value is lesser or equal to the significance value, then the hypothesis should be rejected if the p-value is higher than the significance value the hypothesis should be accepted. Figure 2: Purple and orange ochre stars on rocky surfaces Carrying out an experiment in a natural environment is an advantage as this can be reflected on real life therefore having higher ecological validity. However, doing this experiment can have some disadvantages, even though this is cost-effective and done in a natural environment, we do not know how reliable these results will be because the collection of results can have some inaccuracy. Also, it also has to be understood that many other biotic and abiotic factors can affect this experiment. As it is done in the natural environment there will be issues with Pisaster ochraceus being predated by sea otters or even seagulls which can have an effect on results and also making it less generalisable. Air temperature and water temperature can also have an effect on these species as well and it cannot be controlled which can create issues on results. Also, by using a quadrat, it can be prone to human errors (miscounting or overcounting) and having randomly spaced quadrats, can miss out individual species therefore showing under-representative estimates and results in the populations of the Pisaster ochraceus . More repeats would have to be done throughout the years to collect more accurate results and also be tested by other variables such as temperature, wave exposure and even pH of seawater to see if this also affects relative fitness of Pisaster ochraceus with different colouration. It is important to think about the ethical considerations as it is a natural area and these species organisms live there and it should not be damaged before, during and after the experiment. The creatures must be respected as well as the environment they live in. With many equipment being used, it is vital not to interfere with the organisms, create litter or disturb the habitat as it will be unethical. In conclusion, this experiment is effective as it is done in a natural environment at different sites but it will be time consuming due to changes in weather and working out the abundance over all the sites for a long period of time. By doing the paired t-test, a difference in the two means can be seen and create smaller effects on error from the samples. Written by Jeevana Thavarajah Related articles: An experiment on castor oil / on pendulums REFERENCES The Biological Bulletin. 2022. Color Polymorphism and Genetic Structure in the Sea Star Pisaster ochraceus | The Biological Bulletin: Vol 211, No 3. [online] Available at: [Accessed 18 January 2022]. Animal Diversity Web. 2022. Pisaster ochraceus. [online] Available at: [Accessed 18 January 2022]. Sanctuarysimon.org. 2022. SIMoN :: Species Database. [online] Available at: [Accessed 18 January 2022]. Rgs.org. 2022. Royal Geographical Society - Fieldwork in schools. [online] Available at: [Accessed 18 January 2022].
- Allergies | Scientia News
Deconstructing allergies: mechanisms, treatments, and prevention Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Allergies 08/07/25, 16:24 Last updated: Published: 13/05/24, 14:27 Deconstructing allergies: mechanisms, treatments, and prevention Modern populations have witnessed a dramatic surge in the number of people grappling with allergies, a condition that can lead to a myriad of health issues such as eczema, asthma, hives, and, in severe cases, anaphylaxis. For those who are allergic, these substances can trigger life-threatening reactions due to their abnormal immune response. Common allergens include antibiotics like penicillin, as well as animals, insects, dust, and various foods. The need for strict dietary restrictions and the constant fear of accidental encounters with allergens often plague patients and their families. Negligent business practices and mislabelled food have even led to multiple reported deaths, underscoring the gravity of allergies and their alarming rise in prevalence. The primary reason for the global increase in allergies is believed to be the lack of exposure to microorganisms during early childhood. The human microbiome, a collection of microorganisms that live in and on our bodies, is a key player in our immune system. The rise in sanitation practices is thought to reduce the diversity of the microbiome, potentially affecting immune function. This lack of exposure to infections may cause the immune system to overreact to normally harmless substances like allergens. Furthermore, there is speculation about the impact of vitamin D deficiency, which is becoming more common due to increased indoor time. Vitamin D is known to support a healthy immune response, and its deficiency could worsen allergic reactions. Immune response Allergic responses occur when specific proteins within an allergen are encountered, triggering an immune response that is typically used to fight infections. The allergen's proteins bind to complementary antigens on macrophage cells, causing these cells to engulf the foreign substance. Peptide fragments from the allergen are then presented on the cell surface via major histocompatibility complexes (MHCs), activating receptors on T helper cells. These activated T cells stimulate B cells to produce immunoglobulin E (IgE) antibodies against the allergen. This sensitizes the immune system to the allergen, making the individual hypersensitive. Upon re-exposure to the allergen, IgE antibodies bind to allergen peptides, activating receptors on mast cells and triggering the release of histamines into the bloodstream. Histamines cause vasodilation and increase vascular permeability, leading to inflammation and erythema. In milder cases, patients may experience itching, hives, and runny nose; however, in severe allergic reactions, intense swelling can cause airway constriction, potentially leading to respiratory compromise or even cessation. At this critical point, conventional antihistamine therapy may not be enough, necessitating the immediate use of an EpiPen to alleviate symptoms and prevent further deterioration. EpiPens administer a dose of epinephrine, also known as adrenaline, directly into the bloodstream when an individual experiences anaphylactic shock. Anaphylactic shock is typically characterised by breathing difficulties. The primary function of the EpiPen is to relax the muscles in the airway, facilitating easier breathing. Additionally, they counteract the decrease in blood pressure associated with anaphylaxis by narrowing the blood vessels, which helps prevent symptoms such as weakness or fainting. EpiPens are the primary treatment for severe allergic reactions leading to anaphylaxis and have been proven effective. However, the reliance on EpiPens underscores the necessity for additional preventative measures for individuals with allergies before a reaction occurs. Preventative treatment Young individuals may have a genetic predisposition to developing allergies, a condition referred to as atopy. Many atopic individuals develop multiple hypersensitivities during childhood, but some may outgrow these allergies by adulthood. However, for high-risk atopic children, preventive measures may offer a promising solution to reduce the risk of developing severe allergies. Clinical trials conducted on atopic infants explored the concept of immunotherapy treatments, involving continuous exposure to small doses of peanut allergens to prevent the onset of a full-blown allergy. Initially, skin prick tests for peanut allergens were performed, and only children exhibiting negative or mild reactions were selected for the trial. Those with severe reactions were excluded due to the high risk of anaphylactic shock with continued exposure. The remaining participants were randomly assigned to either consume peanuts or follow a peanut-free diet. Monitoring these infants as they aged revealed that continuous exposure to peanuts reduced the prevalence of peanut allergies by the age of 5. Specifically, only 3% of atopic children exposed to peanuts developed an allergy compared to 17% of those in the peanut-free group. The rise in severe allergies poses a growing concern for global health. Once an atopic individual develops an allergy, mitigating their hypersensitivity can be challenging. Current approaches often involve waiting for children to outgrow their allergies, overlooking the ongoing challenges faced by adults who remain highly sensitive to allergens. Implementing preventive measures, such as early exposure through immunotherapy, could enhance the quality of life for future generations and prevent sudden deaths in at-risk individuals. In conclusion, a dramatic surge in the prevalence of allergies in modern populations requires more attention from researchers and health care providers. Living with allergies can bring many complexities into someone’s life even before they potentially have a serious reaction. Currently treatments are focused on post-reaction emergency care, however preventative strategies are still a pressing need. With cases of allergies predicted to rise further, research into this global health issue will become increasingly important. There are already promising results from early trials of immunotherapy treatments, and with further research and implementation these treatments could improve the quality of life of future generations. Written by Charlotte Jones Related article: Mechanisms of pathogen evasion Project Gallery
- Artificial Intelligence in Drug Research and Discovery | Scientia News
Using the new technology AI to develop drugs Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Artificial Intelligence in Drug Research and Discovery 09/07/25, 10:56 Last updated: Published: 24/05/23, 10:20 Using the new technology AI to develop drugs Drug research has been transformed by artificial intelligence (AI), which has become a game-changing technology in several industries. Only a small portion of potential drugs make it to the market after the lengthy and expensive traditional drug discovery process. A drug's discovery and development can take over ten years and cost an average of US$2.8 billion. Even then, nine out of 10 medicinal compounds fall short of passing regulatory approval and Phase II clinical trials. The use of AI in this process, however, has the potential to greatly improve effectiveness, accuracy, and success rates. Given that AI can help with rational drug design, support decision-making, identify the best course of treatment for a patient, including personalised medicines, manage the clinical data generated, and use it for future drug development, it is reasonable to assume that it will play a role in the development of pharmaceutical products from the laboratory bench to bedside table. There are several ways in which AI is currently being used to enhance the drug discovery process. One of the primary applications is virtual screening ( Figure 2 ), which involves using machine learning algorithms to analyse large libraries of chemical compounds and predict which ones are likely to be effective against a specific disease target. This can significantly reduce the time and cost required for drug discovery by narrowing down the number of compounds that need to be tested in the lab. Another way AI is being used in drug discovery is through generative models, which use deep learning algorithms to design molecules that are optimised for specific therapeutic targets. This approach can be used to design molecules that are effective against a specific target while also minimising toxicity or other undesirable properties. Data analysis is another area where AI can be applied in drug discovery. By analysing large datasets of biological and chemical information, AI can help researchers identify patterns and relationships that may be relevant to drug discovery. For example, AI can be used to analyse genomic data to identify potential drug targets or to analyse drug-drug interactions to identify potential safety issues. However, one of the main challenges is the need for high-quality data, as AI models rely on large amounts of data to make accurate predictions. Additionally, there is a risk that AI models may miss important insights or make incorrect predictions if the data used to train them is biased or incomplete. Nevertheless, the continued development of AI and its amazing tools seeks to lessen the difficulties experienced by pharmaceutical firms, impacting both the medication development process and the full lifecycle of the product, which may account for the rise in the number of start-ups in this industry. The importance of automation will increase as a result of using the most up-to-date AI-based technologies, which will not only shorten the time needed for products to reach the market but also enhance product quality, increase overall production process safety, and make better use of available resources while also being cost-effective. In conclusion, the use of AI in drug discovery has the potential to revolutionize the field and significantly improve the success rate of potential drug candidates. Despite the challenges and limitations, the continued research and development of AI in drug discovery will undoubtedly lead to faster, cheaper, and more accurate drug development. Written by Navnidhi Sharma Related articles: A breakthrough procedure in efficient drug discovery / AI in medicinal chemistry / AI advancing genetic disease diagnosis Project Gallery
- How rising food prices contribute to malnutrition | Scientia News
Food deserts Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link How rising food prices contribute to malnutrition 09/07/25, 14:18 Last updated: Published: 18/08/23, 20:13 Food deserts Introduction Over the past year, there have been news articles explaining how food has become more expensive along with people choosing between heating their homes and paying for groceries. According to the Office for National Statistics, the yearly cost of food and non-alcoholic drink has risen to 19.1% within one year till March 2023. There are various reasons for the food price increase; some of them include Brexit, lack of agricultural productivity and weakening of the British pound. Therefore, the spending habits of the general population have shifted towards ultra-processed foods (UPFs) as they tend to be cheaper compared to minimally processed food (MPFs). Yet, UPFs are really unhealthy with a cohort study discovering that there was an increase in mortality by 18% with each additional serving. For people living in food swamps and deserts, this is a harsh reality for them and there have to be policies to properly address this. The difference between food deserts and swamps Food deserts are places where populations have limited access to healthy and affordable food (i.e. MPFs); there are factors that contribute to this phenomenon such as having lower income or geographic location whereby there is a long distance to the nearest market. However, the increase in food prices as illustrated above can even be a part of the problem. In contrast, there are food swamps, which are areas containing more businesses that sell foods lacking nutritional value, so UPFs as opposed to MPFs. This also relates to the cost of groceries because certain populations living in food swamps are likely to purchase UPFs because they are in closer proximity than MPFs, besides being cheaper. Both situations can contribute not only to obesity, but other forms of malnutrition which will be explored below. Malnutrition To suffer from malnutrition means that there is an imbalance of nutrients and can be categorised based on undernutrition or overnutrition along with disparity in macronutrients (carbohydrates, fats and proteins) and micronutrients (vitamins and minerals). Additionally, there are countries experiencing specific forms of malnutrition such as undernutrition in comparison to others due to ongoing warfare, lack of nutritional education and/or living in poverty. The impact of malnutrition on organs in Figure 1 happens because there is deficiency in certain macronutrients and/or micronutrients, which are essential in the structure and functioning of the body. Another consequence of malnutrition is weight loss because there is depletion of fat and muscle mass in the body, leading to impaired muscle function. Food deserts/ swamps and malnutrition Going back to food deserts/swamps, their impact on malnutrition can be drastic. For example, a review focusing on food insecurity (disrupted food intake/eating patterns due to low income or supplementary resources), suggested a link between malnutrition and food insecurity along with a possible association between malnutrition and gut microbiome being negatively altered, though more research is needed. Another review looking at food insecurity in both US adults and children discovered that in a food-insecure adult’s diet, they had less vegetables, fruits and dairy leading to reduced vitamins A and B6, calcium, magnesium and zinc. How do both reviews relate to food swamps/deserts? Well, populations who are food-insecure may be likely to live in areas where there is a lack of access to healthy foods (i.e. food swamps/ deserts). Conclusion Taking into account everything discussed in this article, it seems that governments in countries where food swamps/deserts are prevalent need to address this issue through effective policies. Otherwise, there could be a future where there is an increase in chronic diseases like malnutrition. There is even potential susceptibility to infectious diseases due to malfunctioning organs stemming from malnutrition. Written by Sam Jarada Related articles: Food at the molecular level / Famine-induced epigenetic changes Project Gallery










