Search Index
280 items found
- Quantum Chemistry | Scientia News
Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Quantum Chemistry Last updated: 06/01/25, 12:35 Exploring the microscopic world of molecules Quantum chemistry provides a glimpse into the strange and fascinating world of molecules and atoms, where the principles of traditional chemistry and physics no longer apply. While classical chemistry can explain molecular interactions and bonding, it cannot fully account for particles' unusual, frequently contradictory behaviour at the atomic and subatomic levels. Quantum mechanics provides scientists with a powerful framework for understanding the complicated behaviour of electrons and nuclei in molecules. The basics of quantum chemistry The notion of wave-particle duality, which states that particles, such as electrons, act not just like objects with mass but also like waves, is central to quantum chemistry. Because the exact position and momentum of an electron cannot be known at the same time (according to the Heisenberg Uncertainty Principle), probability distributions are used to describe electrons rather than accurate orbits. These distributions are represented by mathematical functions known as wave functions, which describe the probability of finding an electron in a specific location surrounding the nucleus. This fundamentally affects our understanding of chemical bonding. Instead of conceiving a bond as a solid connection between two atoms, quantum chemistry defines it as the overlap of electron wave functions, which can result in a variety of molecular topologies depending on their energy levels. Quantum mechanics and bonding theories Quantum mechanics has fundamentally altered our knowledge of chemical bonding. The classic Lewis structure model, which explains bonding as the sharing or transfer of electrons, is effective for simple molecules but fails to convey the complexities of real-world interactions. In contrast, quantum chemistry introduces the concept of molecular orbitals. In molecular orbital theory, electrons are not limited to individual atoms but can spread across a molecule in molecular orbitals, which are combinations of atomic orbitals from the participating atoms. These molecular orbitals provide a more detailed explanation for bonding, especially in compounds that do not match simple bonding models, such as delocalised systems like benzene or metals. For example, quantum chemistry explains why oxygen is paramagnetic (it possesses unpaired electrons), a characteristic that classical bonding theories cannot explain. Quantum chemistry and quantum computing One of the most interesting frontiers in quantum chemistry is its application to the development of quantum computers. Traditional computers, despite their enormous processing power, struggle to model the complicated behaviour of molecules, particularly large ones. This is because simulating molecules at the quantum level necessitates tracking all conceivable interactions between electrons and nuclei, which can quickly become computationally challenging. Quantum computers use fundamentally different ideas. They employ qubits, which, unlike classical bits, can exist in a state of both 0 and 1. This enables quantum computers to execute several calculations concurrently and manage the complexity of molecular systems considerably more effectively. This could lead to advancements in quantum chemistry, such as drug discovery, where precisely modelling molecular interactions is critical. Instead of depending on trial and error, scientists may utilise quantum computers to model how possible pharmaceuticals interact with biological molecules at the atomic level, thereby speeding up the creation of novel therapies. Similarly, quantum chemistry could help in the development of novel materials with desirable qualities, such as stronger alloys and more efficient energy storage devices. Why quantum chemistry matters The consequences of quantum chemistry go well beyond the lab. Understanding molecular behaviour at its most fundamental level allows us to create new technologies and materials that have an impact on everyday life. Nanotechnology, for example, relies largely on quantum principles to generate innovative materials with applications in medicine, electronics, and clean energy. Catalysis, the technique of speeding up reactions, also benefits from quantum chemistry insights, making industrial operations more efficient, such as cleaner fuel generation and more effective environmental remediation. Furthermore, quantum chemistry provides insights into biological processes. Enzymes, the proteins that catalyse processes in living organisms, work with a precision that frequently defies standard chemistry. Tunnelling, quantum phenomena in which particles slip past energy barriers, helps to explain these extraordinarily efficient biological processes. In brief, quantum chemistry provides the fundamental understanding required to push the limits of chemistry and physics by exposing how molecules interact and react in ways that traditional theories cannot fully explain. Quantum chemistry has the potential to radically alter our understanding of the microscopic world, whether through theoretical models, practical applications, or future technology advancements. Written by Laura K Related article: Quantum computing Project Gallery
- Understanding and detecting Kawasaki disease on time | Scientia News
Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Understanding and detecting Kawasaki disease on time Last updated: 06/01/25, 12:25 A rare disease that causes inflammation in the blood vessels What is Kawasaki disease? Kawasaki disease is a rare type of vasculitis that damages blood vessels through inflammation and is prevalent in children under the age of five. Kawasaki disease is predominantly found in children of Asian races–mainly in Japan, Korea, Taiwan, and Asian races in the US–and is the leading cause of acquired heart disease in children in most developed countries. What causes Kawasaki disease? There is no known cause of Kawasaki disease, however, studies suggest a link between genetics and the disease, noting a high incidence between siblings and in children with a parental history of Kawasaki disease. Another study provided further evidence of genetic susceptibility, stating that variation in the expression of CASP3 and ITPKC—genes heavily involved in T cell function—leads to an overexpression of T cells.This can be attributed to the inflammatory symptoms of the disease. There are speculations that it may be caused by an airborne agent originating in Central Asia which moves across different geographical regions. This study suggests that through winds, the airborne agent is able to cause Kawasaki disease via infection of the respiratory tract–further investigation is needed regarding this hypothesis. Diagnosing Kawasaki disease Symptoms of Kawasaki disease, which are often accompanied by a fever, are classified into three phases: acute, subacute, and convalescent. The acute phase usually lasts between two to three weeks and symptoms include: Carditis Mucosal inflammation (cracked and dry lips, strawberry tongue, swollen lymph nodes) Polymorphous rash Coronary artery aneurysms The subacute phase also lasts up to three weeks and includes symptoms such as: - Perineal and periungual desquamation - Arthralgia - Myocardial disease The convalescent phase is when most clinical signs dissolve and usually lasts up to three months. It is important to note that while most symptoms clear up during this phase, cardiac issues may still persist in some patients. Misdiagnosing Kawasaki disease is very common as its symptoms are similar to that of many diseases like scarlet fever or toxic shock syndrome. With that being said, confirming its diagnosis is often a case of ruling out these diseases. In addition to identifying symptoms linked to other diseases, conducting laboratory tests such as CRP, CBC, and ESR can help confirm a diagnosis of Kawasaki disease. Additionally, echocardiograms and electrocardiograms can help assess coronary abnormalities as well as overall heart function. Treating Kawasaki disease Following diagnoses, patients are first administered an IVIG and a high dose of aspirin to reduce inflammation as well as eliminate pain, swelling and fever. Patients are then administered lower doses of aspirin which helps prevent blood clotting. Roughly 25% of untreated patients are at a higher risk of developing coronary artery aneurysms and lasting cardiovascular issues in general. This risk drops down to 5% when treated appropriately. IVIG is proven to be effective in treating approximately 85-90% of cases when administered within the first ten days of the illness which is why it is imperative that patients are treated early. X-rays are regularly conducted on patients as they can help visualise blood vessels and potential heart abnormalities that may suggest further complications. It can also observe the effectiveness of treatment over time. Post-recovery, an echocardiogram is recommended periodically to detect any coronary abnormalities that may have developed much later on. Summary Kawasaki disease is a rare disease that causes inflammation in the blood vessels. It normally develops in children under the age of five and is yet to have a known cause. It is often hard to diagnose as its symptoms are similar to that of other diseases, which is why it is important to identify its symptoms (polymorphous rash, mucosal inflammation, desquamation, etc) as well as conduct tests such as CBC, CRP, ESR, an electrocardiogram, etc to help rule out other diseases. It is essential that children with Kawasaki disease are diagnosed and treated early as this can help treat coronary artery aneurysm and prevent lasting coronary and cardiovascular abnormalities. Written by Sherine Latheef Related articles: Sideroblastic anaemia / Blood / Inflammation therapy REFERENCES Onouchi, Y., Ozaki, K., Buns, J.C., Shimizu, C., Hamada, H., Honda, T., Terai, M., Honda, A., Takeuchi, T., Shibuta, S., Suenaga, T., Suzuki, H., Higashi, K., Yasukawa, K., Suzuki, Y., Sasago, K., Kemmotsu, Y., Takatsuki, S., Saji, T. and Yoshikawa, T. (2010). Common variants in CASP3 confer susceptibility to Kawasaki disease. Human Molecular Genetics , 19(14), pp.2898–2906. doi: https://doi.org/10.1093/hmg/ddq176 . Agarwal, S. and Agrawal, D.K. (2017). Kawasaki Disease: Etiopathogenesis and Novel Treatment Strategies. Expert review of clinical immunology , [online] 13(3), pp.247–258. doi: https://doi.org/10.1080/1744666X.2017.1232165 . Wolff, A.E., Hansen, K.E. and Zakowski, L. (2007). Acute Kawasaki Disease: Not Just for Kids. Journal of General Internal Medicine , [online] 22(5), pp.681–684. doi: https://doi.org/10.1007/s11606-006-0100-5 . Oh, J.-H., Cho, S. and Choi, J.A. (2023). Clinical Signs of Kawasaki Disease from the Perspective of Epithelial-to-Mesenchymal Transition Recruiting Erythrocytes: A Literature Review. Reviews in Cardiovascular Medicine , 24(4), pp.109–109. doi: https://doi.org/10.31083/j.rcm2404109 . Team, H.J. (2018). Kawasaki Disease - Causes, Signs, Symptoms,Treatment . [online] Health Jade. Available at: https://healthjade.com/kawasaki-disease/ . Project Gallery
- How does physical health affect mental health? | Scientia News
Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link How does physical health affect mental health? Last updated: 05/01/25, 14:22 Healthy heart, healthy mind Introduction Over the last decade, maintaining good mental health has become an increasing global priority. More people are committing time to self-care meditation, and other cognitive practices. We have also seen a rise in people taking care of their physical health through exercise and clean eating. This is fantastic – people are making time for one of the most important aspects of life, their health! But with the fast-paced nature of modern lifestyles, it is hard to devote separate time each week to purely mental and physical wellbeing. What if there were ways we could enhance both physical and mental wellbeing at the same time? Are both forms of health completely distinct from one another, or could a change in one have an effect on the other? If you’re looking for ways to improve your self-care efficiency, this may be the article for you! Healthy heart, healthy mind Physical health is a lot easier to define, on account of it being largely visible. Mental health on the other hand lacks much of a concrete definition. What is widely agreed is that emotions and feelings play a large part in making up our mental health. Emotions are largely determined by how we feel about our current internal and external environment, meaning bad bodily signs (as part of our internal environment) will have a negative effect on our overall mood. This is why being ill puts us in such a bad mood – even a blocked nose can annoy us by affecting how we do everyday activities. Poor fitness levels are likely no different – not being the most physically capable and finding everyday physical tasks challenging will likely have an effect on your mood and your confidence. Recent studies have backed up this idea, namely that signs of bodily inflammation are associated with increased risk of depression and negative mood. The role of neurotransmitters So being physically fit is associated with having better mental health, but does that mean exercise itself is mentally health as well, or is it just the effect of exercise that makes us happy? In other words, we seem to enjoy the result, but do we enjoy the process too? Studies have found that exercise increases dopamine levels in the brain. Dopamine is a neurotransmitter (a chemical messenger in the brain) that signals reward and motivation, similar to when we earn something for the work we put in ( Figure 1 ). Exercise is therefore seen as rewarding to the brain. There is also a lot of evidence suggesting exercise increases serotonin levels in both rats and humans. Serotonin is also a neurotransmitter, associated with directly enhancing mood and even having anti-depressant effects. Experiments in rats even suggest that increases in serotonin can decrease anxiety levels. Now, this does not mean exercise alone can cure anxiety disorder or depression, but could it be a useful variable in a clinical setting? Clinical uses Studies in depressive patients suggest that, yes, exercise does lead to better mental and physical health in patients with depression. This pairs well with another common finding that depressed patients are very rarely willing to complete difficult tasks for reward. So even on an extreme clinical scale, mental ill-health can have very damning consequences on maintaining good physical health. On the other hand, simple activities such as light jogs or walks may be the key to reversing negative spirals and getting on the right track towards recovery ( Figure 2 ). Conclusion and what we can do So far we have pretty solid evidence that mental health can impact physical health and vice versa, both negatively and positively. Going back to the introductory question, yes! We can find activities that improve both our physical and mental health. The trick is to find exercises that we find enjoyable and rewarding. On the clinical side, this could mean that physical exercise may be as effective at remitting depressive symptoms as antidepressants, likely with a lot fewer side effects. With that said, stay active and have fun, it helps more than you think! Written by Ramim Rahman Related articles: Environmental factors in exercise / Stress and neurodegeneration / Personal training REFERENCES Nord, C. (2024) The balanced brain . Cambridge: Penguin Random House. Osimo, E.F. et al. (2020) ‘Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls’, Brain, Behavior, and Immunity, 87, pp. 901–909. doi:10.1016/j.bbi.2020.02.010. Basso, J.C. and Suzuki, W.A. (2017) ‘The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A Review’, Brain Plasticity , 2(2), pp. 127–152. doi:10.3233/bpl-160040. [figure 1] DiCarlo, G.E. and Wallace, M.T. (2022) ‘Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates’, Neuroscience & Biobehavioral Reviews, 133, p. 104494. doi:10.1016/j.neubiorev.2021.12.017. [figure 2] Donvito, T. (2020) Cognitive behavioral therapy for arthritis: Does it work? what’s it like?, CreakyJoints. Available at: https://creakyjoints.org/living-with-arthritis/mental-health/cognitive-behavioral-therapy-for-arthritis/ (Accessed: 06 December 2024) Project Gallery
- Why South Asian genes remember famine | Scientia News
Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Why South Asian genes remember famine Last updated: 05/01/25, 14:00 Famine-induced epigenetic changes and public health strategies in affected populations Our genes are often thought of as a fixed blueprint, but what if our environment could change how they work? This is the intriguing idea behind epigenetics—a field that shows how our environment, combined with the body’s adaptive responses for survival, can influence gene expression without altering our DNA. In South Asia, famines such as the infamous Bengal Famine of 1943 caused immense suffering, and these hardships may have triggered genetic changes that continue to affect generations. Today, South Asians face an increased risk of developing Type 2 diabetes by age 25, whereas White Europeans generally encounter this risk around age 40. What is driving this difference in risk? This article will explore the science behind these epigenetic changes, their impact on the descendants of famine survivors and how these insights can shape public health, policy, and research. The legacy of historical famines In 1943, the Bengal Famine claimed around 3 million lives. Nobel laureate Amartya Sen argues that the severity of the famine was not merely a result of prior natural disasters and disease outbreaks in crops. Instead, it was primarily driven by wartime inflation, speculative buying, and panic hoarding, which disrupted food distribution across the Bengal region. Consequently, for the average Bengali citizen, death from starvation, disease, and malnutrition became widespread and inevitable. The impact of the famine extended well beyond the immediate loss of life. Dr Mubin Syed, a radiologist specialising in vascular and obesity medicine, emphasises that these famines have left a lasting mark on the health of future generations. Dr Syed explains that South Asians, having endured numerous famines, have inherited "starvation-adapted" traits. These traits are characterised by increased fat storage. As a result, the risk of cardiovascular diseases, diabetes, and obesity is heightened in their descendants. This tendency towards fat storage is believed to be closely tied to epigenetic factors, which play a crucial role in how these traits are passed down through generations. Epigenetic mechanisms and their impact These inherited traits are shaped by complex epigenetic mechanisms, which regulate gene expression in response to environmental stressors like famines without altering the underlying DNA sequence. DNA methylation, a process involving the addition of small chemical groups to DNA, plays a crucial role in regulating gene expression. When a gene is 'on,' it is actively transcribed into messenger RNA (mRNA), resulting in the synthesis of proteins such as enzymes that regulate energy metabolism or hormones like insulin that manage blood sugar levels. Conversely, when a gene is 'off,' it is not transcribed, leading to a deficiency of these essential proteins. During periods of famine, increased DNA methylation can enhance the body's ability to conserve and store energy by altering the activity of metabolism-related genes. Epigenetic inheritance, a phenomenon where some epigenetic tags escape the usual reprogramming process and persist across generations, plays a crucial role in how famine-induced traits are passed down. Typically, reproductive cells undergo a reprogramming phase where most epigenetic tags are erased to reset the genetic blueprint. However, certain DNA methylation patterns can evade this erasure and remain attached to specific genes in the germ cells, the cells that develop into sperm and egg cells. These persistent modifications can influence gene expression in the next generation, affecting metabolic traits and responses to environmental stressors. This means the metabolic adaptations seen in famine survivors, such as increased fat storage and altered hormone levels, can be transmitted to their descendants, predisposing them to similar health risks. Research has highlighted how these inherited traits manifest in distinct hormone profiles across different ethnic groups. A study published in Diabetes Care found that South Asians had higher leptin levels (11.82 ng/mL) and lower adiponectin levels (9.35 µg/mL) compared to Europeans, whose leptin levels were 9.21 ng/mL and adiponectin levels were 12.96 µg/mL. Leptin, encoded by the LEP gene, is a hormone that reduces appetite and encourages fat storage. Adiponectin, encoded by the ADIPOQ gene, improves insulin sensitivity and supports fat metabolism. Epigenetic changes, such as DNA methylation, in the LEP and ADIPOQ genes have led to these imbalances, which were advantageous for South Asian populations during times of famine. Elevated leptin levels helped ensure the body could maintain energy reserves for survival, while lower adiponectin levels slowed fat breakdown, preserving stored fat for future use. This energy-conservation mechanism allowed individuals to endure long periods of food scarcity. Remarkably, these epigenetic changes can be passed down to subsequent generations. As a result, descendants continue to exhibit these metabolic traits, even in the absence of famine conditions. This inherited imbalance—higher leptin levels and lower adiponectin—leads to a higher predisposition to metabolic disorders. Increased leptin levels can cause leptin resistance, where the body no longer responds properly to leptin’s signals, driving overeating and fat accumulation. Simultaneously, reduced adiponectin weakens the body’s ability to regulate insulin and break down fats efficiently, resulting in higher blood sugar levels and greater fat storage. These combined effects heighten the risk of obesity and Type 2 diabetes in South Asian populations today. Integrating cultural awareness in health strategies Understanding famine-induced epigenetic changes provides a compelling case for rethinking public health strategies in affected populations. While current medicine cannot reverse famine-induced epigenetic changes in South Asians, culturally tailored interventions and preventive measures are crucial to reducing metabolic risks. These should include personalised dietary plans, preventive screenings, and targeted healthcare programmes. For example, the Indian Diabetes Prevention Programme showed that lifestyle changes reduced diabetes risk by 28.5% among high-risk individuals. Equally, policymakers must consider the broader societal factors that contribute to these health risks, and qualitative studies highlight challenges in shifting cultural attitudes. Expectations that women prepare meals in line with traditional norms often limit healthier dietary options.Differing perceptions of physical activity can complicate efforts to promote healthier lifestyles. For example, a study in East London found that some communities consider prayer sufficient exercise, which adds complexity to changing attitudes. Facing our past to secure a healthier future As we uncover the long-term effects of environmental stressors like historical famines, it becomes clear that our past is not just a distant memory but an active force shaping our present and future health. Epigenetic changes inherited from South Asian ancestors who endured famine have heightened the risk of metabolic disorders in their descendants. For instance, UK South Asian men have been found to have nearly double the risk of coronary heart disease (CHD) compared to White Europeans. Consultant cardiologist Dr Sonya Babu-Narayan has stated, “Coronary heart disease is the world’s biggest killer and the most common cause of premature death in the UK.” With over 5 million South Asians in the UK alone, this stark reality requires immediate action. We must not only address the glaring gaps in scientific research but also develop targeted public health policies to tackle these inherited health risks. These traits are not relics of the past; they are living legacies that, without swift intervention, will continue to affect generations to come. To truly address the inherited health risks South Asians face, we must go beyond surface-level awareness and commit to long-term, systemic change. Increasing funding for research that directly focuses on the unique health challenges within this population is non-negotiable. Equally crucial are culturally tailored public health initiatives that resonate with the affected communities, alongside comprehensive education programmes that empower individuals to take control of their health. These steps are not just about improving outcomes—they’re about breaking a cycle. The question, therefore, is not simply whether we understand these epigenetic changes, but whether we have the resolve to confront their full implications. Can we muster the political will needed to confront these inherited risks? Can we unite our efforts to stop these risks from affecting the health of entire communities? The cost of inaction is not just measured in statistics—it will be felt in the lives lost and the potential unrealised. The time to act is now. Written by Naziba Sheikh Related articles: Epigenetics / Food deserts and malnutrition REFERENCES Safi, M. (2019). Churchill’s policies contributed to 1943 Bengal famine – study. [online] the Guardian. Available at: https://www.theguardian.com/world/2019/mar/29/winston-churchill-policies-contributed-to-1943-bengal-famine-study . Bakar, F. (2022). How History Still Weighs Heavy on South Asian Bodies Today. [online] HuffPost UK. Available at: https://www.huffingtonpost.co.uk/entry/south-asian-health-colonial-history_uk_620e74fee4b055057aac0e9f . Sayed, M., Deek, F. and Shaikh, A. (2022). The Susceptibility of South Asians to Cardiometabolic Disease as a Result of Starvation Adaptation Exacerbated During the Colonial Famines. [online] Research Gate. Available at: https://www.researchgate.net/publication/366596806_The_Susceptibility_of_South_Asians_to_Cardiometabolic_Disease_as_a_Result_of_Starvation_Adaptation_Exacerbated_During_the_Colonial_Famines#:~:text=This%20crisis%20could%20be%20the,adapted%20physiology%20can%20become%20harmful . Utah.edu . (2009). Epigenetics & Inheritance. [online] Available at: https://learn.genetics.utah.edu/content/epigenetics/inheritance/ . Palaniappan, L., Garg, A., Enas, E., Lewis, H., Bari, S., Gulati, M., Flores, C., Mathur, A., Molina, C., Narula, J., Rahman, S., Leng, J. and Gany, F. (2018). South Asian Cardiovascular Disease & Cancer Risk: Genetics & Pathophysiology. Journal of Community Health, 43(6), pp.1100–1114. doi: https://doi.org/10.1007/s10900-018-0527-8 . Diabetes UK (2022). Risk of Type 2 Diabetes in the South Asian Community. [online] Diabetes UK. Available at: https://www.diabetes.org.uk/node/12895 . King, M. (2024). South Asian Heritage Month: A Journey Through History and Culture . [online] Wearehomesforstudents.com . Available at: https://wearehomesforstudents.com/blog/south-asian-heritage-month-a-journey-through-history-and-culture . Project Gallery
- 404 | Scientia News
There’s Nothing Here... We can’t find the page you’re looking for. Check the URL, or head back home. Go Home
- Blog | Scientia News
All Posts Check back soon Once posts are published, you’ll see them here.
- Groups List | Scientia News
Groups Sort by: Recent Activity All (1) My Groups Suggested Groups My Site 1 Group Public · 33 members Join
- Search | Scientia News
Search Index All (250) Other Pages (231) Forum Posts (19) 250 items found Other Pages (231) The dopamine connection | Scientia News Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The dopamine connection How your gut influences your mood and behaviour Introduction to dopamine Dopamine is a neurotransmitter derived from an amino acid called phenylalanine, which must be obtained through the diet, through foods such as fish, meat, dairy and more. Dopamine is produced and released by dopaminergic neurons in the central nervous system and can be found in different brain regions. The neurotransmitter acts via two mechanisms: wiring transmission and volume transmission. In wiring transmission, dopamine is released to the synaptic cleft and acts on postsynaptic dopamine receptors. In volume transmission, extracellular dopamine arrives at neurons other than postsynaptic ones. Through methods such as diffusion, dopamine then reaches receptors in other neurons that are not in direct contact with the cell that has released the neurotransmitter. In both mechanisms, dopamine binds to the receptors, transmitting signals between neurons and affecting mood and behaviour. The link between dopamine and gut health Dopamine has been known to result in positive emotions, including pleasure, satisfaction and motivation, which can be influenced by gut health. Therefore, what you eat and other factors, including motivation, could impact your mood and behaviour. This was proven by a study (Hamamah et al., 2022), which looked at the bidirectional gut-brain connection. The study found that gut microbiota was important in maintaining the concentrations of dopamine via the gut-brain connection, also known as the gut microbiota-brain axis or vagal gut-to-brain axis. This is the communication pathway between the gut microbiota and the brain facilitated by the vagus nerve, and it is important in the neuronal reward pathway, which regulates motivational and emotional states. Activating the vagal gut-to-brain axis, which leads to dopamine release, suggests that modulating dopamine levels could be a potential treatment approach for dopamine-related disorders. Some examples of gut microbiota include Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus , and they can affect dopamine by modulating dopaminergic activity. These gut microbiota are able to produce neurotransmitters, including dopamine, and their functions and bioavailability in the central nervous system and periphery are influenced by the gut-brain axis. Gut dysbiosis is the disturbance of the healthy intestinal flora, and it can lead to dopamine-related disorders, including Parkinson's disease, ADHD, depression, anxiety, and autism. Gut microbes that produce butyrate, a short-chain fatty acid, positively impact dopamine and contribute to reducing symptoms and effects seen in neurodegenerative disorders. Dopamine as a treatment It is important to understand the link between dopamine and gut health, as this could provide information about new therapeutic targets and improve current methods that have been used to prevent and restore deficiencies in dopamine function in different disorders. Most cells in the immune system contain dopamine receptors, allowing processes such as antigen presentation, T-cell activation, and inflammation to be regulated. Further research into this could open up a new possibility for dopamine to be used as a medication to treat diseases by changing the activity of dopamine receptors. Therefore, dopamine is important in various physiological processes, both in the central nervous and immune systems. For example, studies have shown that schizophrenia can be treated with antipsychotic medications which target dopamine neurotransmission. In addition, schizophrenia has also been treated by targeting the dysregulation (decreasing the amount) of dopamine transmission. Studies have shown promising results regarding dopamine being used as a form of treatment. Nevertheless, further research is needed to understand the interactions between dopamine, motivation and gut health and explore how this knowledge can be used to create medications to treat conditions. Conclusion The bidirectional gut-brain connection shows the importance of gut microbiota in controlling dopamine levels. This connection influences mood and behaviour but also has the potential to lead to new and innovative dopamine-targeted treatments being developed (for conditions including dopamine-related disorders). For example, scientists could target and manipulate dopamine receptors in the immune system to regulate the above mentioned processes: antigen presentation, T-cell activation, and inflammation. While current research has shown some promising results, further investigations are needed to better comprehend the connection between gut health and dopamine levels. Nevertheless, through consistent studies, scientists can gain a deeper understanding of this mechanism to see how changes in gut microbiota could affect dopamine regulation and influence mood and behaviour. Written by Naoshin Haque Related articles: the gut microbiome / Crohn's disease Project Gallery How does moving houses impact your health and well-being? | Scientia News Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link How does moving houses impact your health and well-being? Evaluating the advantages and disadvantages of gentrification in the context of health Introduction According to the World Health Organization (WHO), health is “a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity". Another way to define health is an individual being in a condition of equilibrium within themselves and the surrounding environment, which includes their social interactions and other factors. Reflecting on historical views of health, ancient Indian and Chinese medicine and society in Ancient Greece thought of health as harmony between a person and their environment, which underlines the cohesion between the soul and body; this is similar to the WHO’s definition of health. Considering these ideas, one key determinant of health is gentrification (see Figure 1 ). It was first defined in 1964 by British sociologist Ruth Glass, who witnessed the dilapidated houses in the London Borough of Islington being taken over and renovated by middle-class proprietors. The broader consequences of gentrification include enhanced living conditions for the residents, differences in ownership prerequisites, increased prices of land and houses, and transformations in the social class structure. Also, these changes cause lower-income inhabitants to be pushed out or go to poorer neighbourhoods, and the conditions in these neighbourhoods, which can include racial separation, lead to inequities and discrepancies in health. For example, a systematic review discovered that elderly and Black residents were affected more by gentrification compared to younger and White citizens; this highlights the importance of support and interventions for specific populations during urban renewal. Given the knowledge provided above, this article will delve further into the advantages and disadvantages of gentrification in the context of health outcomes. Advantages of gentrification Gentrification does have its benefits. Firstly, it is positively linked with collective efficacy, which is about enhancing social cohesion within neighbourhoods and maintaining etiquette; this has health benefits for residents, like decreased rates of obesity, sexually transmitted diseases, and all-cause mortality. Another advantage of gentrification is the possibility of economic growth because as more affluent tenants move into specific neighbourhoods, they can bring companies, assets, and an increased demand for local goods and services, creating more jobs in the area for residents. Additionally, gentrification can be attributed to decreased crime rates in newly developed areas because the inflow of wealthier citizens often conveys a more substantial sense of community and investment in regional security standards. Therefore, this revitalised feeling of safety can make these neighbourhoods more appealing to existing and new inhabitants, which leads to further economic development. Moreover, reducing crime can improve health outcomes by reducing stress and anxiety levels among residents, for example. As a result, the community's general well-being can develop, leading to healthier lifestyle choices and more lively neighbourhoods. Furthermore, the longer a person lives in a gentrifying neighbourhood, the better their self-reported health, which does not differ by race or ethnicity, as observed in Los Angeles. Disadvantages of gentrification However, it is also essential to mention the drawbacks of gentrification, which are more numerous. In a qualitative study involving elderly participants, for example, one of them stated that, “The cost of living increases, but the money that people get by the end of the month is the same, this concerning those … even retired people, and people receiving the minimum wage, the minimum wage increases x every year, isn’t it? But it is not enough”. Elderly residents in Barcelona faced comparable challenges of residential displacement between 2011 and 2017 due to younger adults with higher incomes and those pursuing university education moving into the city. These cases spotlight how gentrification can raise the cost of living without an associated boost in earnings, making it problematic for people with lower incomes or vulnerable individuals to live in these areas. Likewise, a census from gentrified neighbourhoods in Pittsburgh showed that participants more typically conveyed negative health changes and reduced resources. Additionally, one study examined qualitative data from 14 cities in Europe and North America and commonly noticed that gentrification negatively affects the health of historically marginalised communities. These include threats to housing and monetary protection, socio-cultural expulsion, loss of services and conveniences, and raised chances of criminal behaviour and compromised public security. This can be equally observed during green gentrification, where longtime historically marginalised inhabitants feel excluded from green or natural spaces, and are less likely to use them compared to newer residents. To mitigate these negative impacts of gentrification, inclusive urban renewal guidelines should be drafted that consider vulnerable populations to boost health benefits through physical and social improvements. The first step would be to provide residents with enough information and establish trust between them and the local authorities because any inequality in providing social options dramatically affects people’s health-related behaviours. Intriguingly, gentrification has been shown to increase the opportunity for exposure to tick-borne pathogens by populations staying in place, displacement within urban areas, and suburban removal. This increases tick-borne disease risk, which poses a health hazard to impacted residents ( Figure 2 ). As for mental health, research has indicated that residing in gentrified areas is linked to greater levels of anxiety and depression in older adults and children. Additionally, one study found young people encountered spatial disconnection and affective exclusion due to gentrification and felt disoriented by the quickness of transition. Therefore, all of these problems associated with gentrification reveal that it can harm public health and well-being, aggravating disparities and creating feelings of isolation and aloneness in impacted communities. Conclusion Gentrification is a complicated and controversial approach that has noteworthy consequences for the health of neighbourhoods. Its advantages include enhanced infrastructure and boosted economic prospects, potentially leading to fairer access to healthcare services and improved health outcomes for residents. However, gentrification often leads to removal and the loss of affordable housing, which can harm the health of vulnerable populations. Therefore, it is vital for policymakers and stakeholders to carefully evaluate the likely health effects of gentrification and enforce alleviation strategies to safeguard the well-being of all citizens (see Table 1 ). Written by Sam Jarada Related article: A perspective on well-being REFERENCES WHO. Health and Well-Being. Who.int . 2015. Available from: https://www.who.int/data/gho/data/major-themes/health-and-well-being Sartorius N. The meanings of health and its promotion. Croatian Medical Journal. 2006;47(4):662–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080455/ Krahn GL, Robinson A, Murray AJ, Havercamp SM, Havercamp S, Andridge R, et al. It’s time to Reconsider How We Define Health: Perspective from disability and chronic condition. Disability and Health Journal. 2021 Jun;14(4):101129. Available from: https://www.sciencedirect.com/science/article/pii/S1936657421000753 Svalastog AL, Donev D, Jahren Kristoffersen N, Gajović S. Concepts and Definitions of Health and health-related Values in the Knowledge Landscapes of the Digital Society. Croatian Medical Journal. 2017 Dec;58(6):431–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778676/ Foryś I. Gentrification on the Example of Suburban Parts of the Szczecin Urban Agglomeration. remav. 2013 Sep 1;21(3):5–14. Uribe-Toril J, Ruiz-Real J, de Pablo Valenciano J. Gentrification as an Emerging Source of Environmental Research. Sustainability. 2018 Dec 19;10(12):4847. Schnake-Mahl AS, Jahn JL, Subramanian SV, Waters MC, Arcaya M. Gentrification, Neighborhood Change, and Population Health: a Systematic Review. Journal of Urban Health. 2020 Jan 14;97(1):1–25. Project Gallery The chemistry of an atomic bomb | Scientia News Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The chemistry of an atomic bomb Julius Oppenheimer Julius Robert Oppenheimer, often credited with leading the development of the atomic bomb, played a significant role in its creation in the early 1940s. However, it is essential to recognize the collaborative effort of many scientists, engineers, and researchers who contributed to the project. The history and chemistry of the atomic bomb are indeed fascinating, shedding light on the scientific advancements that made it possible. The destructive power of an atomic bomb stems from the rapid release of energy resulting from the splitting, or fission, of fissile atomic nuclei in its core. Isotopes such as uranium-235 and plutonium-239 are selected for their ability to undergo fission readily and sustain a self-sustaining chain reaction, leading to the release of an immense amount of energy. The critical mass of fissionable material required for detonation ensures that the neutrons produced during fission have a high probability of impacting other nuclei and initiating a chain reaction. To facilitate a controlled release of energy, neutron moderation plays a crucial role in the functioning of an atomic bomb. Neutrons emitted during fission have high velocities, making them less likely to be absorbed by other fissile material. However, by employing a moderator material such as heavy water (deuterium oxide) or graphite, these high-speed neutrons can be slowed down. Slowing down the neutrons increases the likelihood of their absorption by fissile material, enhancing the efficiency of the chain reaction and the release of energy. The sheer magnitude of the energy released by atomic bombs is staggering. For example, one kilogram (2.2 pounds) of uranium-235 can undergo complete fission, producing an amount of energy equivalent to that released by 17,000 tons (17 kilotons) of TNT. This tremendous release of energy underscores the immense destructive potential of atomic weapons. It is essential to note that the development of the atomic bomb represents a confluence of scientific knowledge and technological advancements, with nuclear chemistry serving as a foundational principle. The understanding of nuclear fission, the critical mass requirement, and the implosion design were key factors in the creation of the atomic bomb. Exploring the chemistry behind this devastating weapon not only provides insights into the destructive capabilities of atomic energy but also emphasises the responsibility that accompanies its use. In conclusion, while Oppenheimer's contributions to the development of the atomic bomb are significant, it is crucial to acknowledge the collective effort that led to its creation. The chemistry behind atomic bombs, from the selection of fissile isotopes to neutron moderation, plays a pivotal role in harnessing the destructive power of nuclear fission. Understanding the chemistry of atomic weapons highlights the remarkable scientific achievements and reinforces the need for responsible use of atomic energy. By Navnidhi Sharma Project Gallery View All Forum Posts (19) Quizzes #3 In Questions & Answers · 15 February 2023 Form of energy which is due to an object/ particle's motion? A. Kinetic energy B. Gravitational potential energy C. Potential energy D. Thermal energy 0 1 16 Quizzes #5 In Questions & Answers · 4 March 2023 0 1 22 Forum rules In General Discussion · 13 December 2022 We want everyone to get the most out of this community, so we ask that you please read and follow these guidelines: Respect each other Keep posts relevant to the forum topic No spamming 1 0 6 View All
- 404 | Scientia News
There’s Nothing Here... We can’t find the page you’re looking for. Check the URL, or head back home. Go Home
- 404 | Scientia News
There’s Nothing Here... We can’t find the page you’re looking for. Check the URL, or head back home. Go Home