Search Index
281 items found
- Dentistry | Scientia News
Step into the intricate field of dentistry and learn more about dental tourism, tooth decay, water fluoridation- and more. Dentistry Articles Step into the intricate field of dentistry and learn more about dental tourism, tooth decay, water fluoridation- and more. You may also like: Medicine Water fluoridation Diving deep Dental tourism What is 'Turkey teeth'? Tooth decay And how to prevent it COMING SOON
- Are pandemics becoming less severe? | Scientia News
Beginning with the positives, there are reasons why future pandemics may be less serious compared to previous ones like the Spanish Flu (1918-1920), which killed approximately 500 million people or the Black Death (1346-1353), which eliminated half of Europe’s population. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Are pandemics becoming less severe? Last updated: 13/11/24 Published: 25/04/23 Ever since the World Health Organisation (WHO) declared COVID-19 a pandemic in March 2020, many people have become more aware of future pandemics and best management strategies for these health disasters. For example, an online article from 2022 discussed ways to prepare for the next pandemic such as surveilling zoonotic diseases and planning for faster vaccine production; these can be effective in overcoming another pandemic in the future, though it is important to consider factors that may inhibit the above strategies aside from exacerbating future pandemics. With this said, this article will compare the reasons for pandemics becoming less severe and the reasons why they can become worse. Beginning with the positives, there are reasons why future pandemics may be less serious compared to previous ones like the Spanish Flu (1918-1920), which killed approximately 500 million people or the Black Death (1346-1353), which eliminated half of Europe’s population. Firstly, vaccinations reduced the spread of and prevented serious symptoms of many infectious diseases ranging from the eradicated smallpox to the seasonal influenza. Therefore, undermining the success of vaccines during pandemics is not ideal since this has negative consequences, mainly prolonging pandemics and killing more people. Secondly, there are antimicrobial treatments for a person infected with either a viral, bacterial, protozoal, or fungal infection. For instance during World War 2, penicillin has decreased bacterial pneumonia’s death rate from 18% to 1% in soldiers as well as saving 14% of the UK’s injured soldiers. Therefore, this event prevented bacterial spread and a potential pandemic that could have occurred without penicillin or other antibiotics. Another important treatment is for malaria. A review and meta analysis from Ethiopia showed that for artemether-lumefantrine in 10 studies involving 1179 patients, 96.7% did not have a fever and 98.5% did not have the malaria parasite after they were treated for 3 days. Again, artemether-lumefantrine with other antiparasitic drugs reduced the possibility of a malarial pandemic. Additionally, there are non-medical interventions that may decrease the severity of pandemics. For instance, a cross-panel analysis discovered that enforcing a lockdown during the COVID-19 pandemic saw new cases declining around 10 days after execution and this benefit grows after 20 days of the lockdown. Similarly, a review highlighted that social distancing of more than 1 metre between individuals led to reduced COVID-19 transmission risk by 5 times while the impact of protection two-fold for each extra 1 metre. Considering both of these methods, re-using them for future pandemics can reduce infectious disease spread in combination with vaccinations and antimicrobial drugs. On the other hand, it is crucial to consider the counter argument of why pandemics may worsen in the future. To illustrate, there is the possibility that diseases could resurge into more fatal variants similar to COVID-19, which lead to more deaths and vaccines becoming less effective. Alternatively, there may a current contagious pathogen that can combine with another one to form a new disease; this is how HIV/AIDS become virulent since the 1980s to present day as researchers uncovered that the virus collaborates with non-viral diseases like malaria and tuberculosis and viral diseases such as hepatitis C to harm/kill the patient. These instances can occur for viral pathogens along with other types (protists, bacteria and fungi). As for non-viral pathogens, it is likely that future pandemics originate from them with a review discussing bacteria like MRSA or ones causing water-borne and unsanitary food infections infecting humans and animals. It elaborated that multi-drug resistant bacteria would be arduous to destroy opposed to non-resistant ones, resulting in higher: mortalities, medical logistics, costs and hospitalisations. Going back to penicillin with other antibiotics, although it was used since World War 2 for bacterial infections, resistance towards them has exponentially increased whereby countless types of bacteria overpower their effects because antibiotics have been overprescribed and their use in agriculture has made bacteria stronger. Another reason to consider pandemics becoming worse is the counter-effectiveness of lockdowns. An article stated that comparing them between countries is insufficient because there is a lack of evidence for them tackling COVID-19 and the 1918-1920 Spanish Flu. Also, it found that it is expensive to enforce them and suggested a 20 fold death rate, indicating that a cost-benefit analysis is needed before utilising lockdowns to stop the spread of infectious diseases. Additionally, COVID-19 not only had detrimental impacts on health, it influenced non-health factors such as economics, culture and politics. For example, lots of Iranian people went to crowded places and business centres as the government did not have the finances during their lockdown to protect citizens from the virus. Overall, everyone should collaborate to prepare for the inevitability of future pandemics because historically, using a multitude of methods: lockdowns, vaccines, social distancing and antimicrobial drugs in order to minimise the time span and consequences of the pandemics. Referring back to deadliest pandemics from the past like the Black Death and Spanish Flu, it is our responsibility to prevent history from repeating itself. Written by Sam Jarada Related article: Rare zoonotic diseases REFERENCES Sridhar D. Five ways to prepare for the next pandemic. Nature. 2022 Oct 26;610(7933):S50–0. Jarus O. 20 of the worst epidemics and pandemics in history. livescience.com. 2020 Mar 3. Rayner C. How the discovery of penicillin has influenced modern medicine - The Oxford Scientist. The Oxford Scientist. 2020 June 1. Ayalew MB. Therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Ethiopia: a systematic review and meta-analysis. Infectious Diseases of Poverty. 2017 Nov 15;6(1). Alfano V, Ercolano S. The Efficacy of Lockdown Against COVID-19: A Cross-Country Panel Analysis. Applied Health Economics and Health Policy. 2020 Jun 3;18(4):509–17. Sun KS, Lau TSM, Yeoh EK, Chung VCH, Leung YS, Yam CHK, et al. Effectiveness of different types and levels of social distancing measures: a scoping review of global evidence from earlier stage of COVID-19 pandemic. BMJ Open. 2022 Apr 1;12(4):e053938. Singer M. Pathogen-pathogen interaction. Virulence. 2010;1(1):10–8. Salazar CB, Spencer P, Mohamad K, Jabeen A, Abdulmonem WA, Fernández N. Future pandemics might be caused by bacteria and not viruses: Recent advances in medical preventive practice. International Journal of Health Sciences. 2022;16(3):1–3. Ventola CL. The Antibiotic Resistance crisis: Part 1: Causes and Threats. P & T : a peer-rev10. Yanovskiy M, Socol Y. Are Lockdowns Effective in Managing Pandemics? International Journal of Environmental Research and Public Health. 2022 Jul 29;19(15):9295. Yoosefi Lebni J, Abbas J, Moradi F, Salahshoor MR, Chaboksavar F, Irandoost SF, et al. How the COVID-19 pandemic effected economic, social, political, and cultural factors: A lesson from Iran. International Journal of Social Psychiatry. 2020 Jul 2;67(3):002076402093998.
- IB | Scientia News
Common questions and answers- along with helpful resources- regarding the International Baccalaureate programme. International Baccalaureate (IB) Are you a student currently studying the IB, or about to commence your IB program? You're in the right place! You may also like: A-level resources , University prep and Extra resources What is the IB? Jump to resources It is an International Academic Program which is another alternative to A levels. This is a highly academic program with final exams that prepare students for university and careers. You select one subject from each of the five categories, which include two languages, social sciences, experimental sciences, and mathematics. You must also choose either an arts subject from the sixth group or another from the first to fifth groups. How is the IB graded? Subjects might differ from schools and countries but these are the ideal subjects given in the IB. IB is graded through a point system (7 being the highest and 1 being the lowest) and the highest mark you can achieve in total is 45. For the 6 subjects you study you can achieve a maximum of 42 points. Theory of Knowledge and Extended Essay are combined to gain 3 extra bonus points. These 2 subjects will be marked from A (highest) to E (lowest) and then will be converted to points. What are the benefits of studying the IB? Even though there are a lot of subjects, this program is great for students to gain new skills and be an all- rounder. IB also helps students have a better idea of how work will be in university especially with coursework and that is one of the main things you will work on when studying IB and it is known as Internal Asssessment (IA). Doing CAS is also a great opportunity for students to be independent and find activities / services to do outside of school to build up their portfolio on CAS as well as their CV/ personal statement when applying for university. The marking matrix used in the IB. How do universities use the IB to select students? All universities around the world accept the IB as a qualification gained in secondary school. Depending on the degree you are applying to, universities mainly focus on your Higher Level (HL) subjects. Each university has their own requirements for students applying to study a course at their institution. The most common way is considering your total point score out of 45, and your total point score of your HL subjects. Another way is asking applicants to achieve a certain grade in a particular grade at HL or at standard level (SL). If you complete the IB programme well enough, universities may prefer you over the other qualifications e.g. A-levels. Benefits of completing the IB programme. Resources for revision Websites to help Official IB website and the IB Bookshop Maths IA ideas Maths Analysis and Approaches SL and HL practice questions Biology- BioNinja Biology, Chemistry, Physics, Maths- Revision Village Biology, Chemistry, Maths- IB Dead IB Psychology IB Computer Science resources YouTube channels to help Chemistry- Richard Thornley Physics- Chris Doner Textbooks for both HL and SL Bio: Oxford IB Diploma Programme: Biology Course Biology for the IB Diploma by Brenda Walpole Chem: Chemistry Oxford IB Diploma Programme: Chemistry Course Chemistry for the IB Diploma Coursebook with Cambridge Elevate Enhanced Edition b y Steve Owen Physics: Physics Oxford IB Diploma Programme: Physics Course Physics for the IB Diploma with Cambridge by T. A. Tsokos Maths: Maths Oxford IB Diploma Programme- IB Mathematics: analysis and approaches / applications and interpretations
- Technology | Scientia News
Explore artificial intelligence, a technology that has taken the world by storm. Learn how it is used in fields like agriculture, drug discovery, and outer space. Elsewhere, get to grips with semi-conductor manufacturing, quantum computing, and biotechnology. Technology Articles Explore artificial intelligence, a technology that has taken the world by storm. Learn how it is used in fields like agriculture, drug discovery, and outer space. Elsewhere, get to grips with semi-conductor manufacturing, quantum computing, and biotechnology. You may also like: Maths , Physics , Engineering Fake science websites Ways fake science websites misinform and misguide readers The evolution of artificial intelligence And its greater role in natural language processor technologies Medical biotechnology Technology in the medical sciences Quantum computing What are its applications? Improving agriculture Revolutionising sustainable agriculture through AI AI in drug discovery Using this technology in drug research Digital disinformation With the use of IT cells Digital innovation in rural farming What are the benefits? AI in space What is artificial intelligence used for in outer space? Radiation therapy to treat cancer Revolutionising patient setup in cancer treatment AI: the good, the bad, and the future A Scientia News Biology group collaboration Photonic integration In semiconductor manufacturing Nanomedicine Tiny solutions for big health problems NHS clinical computer scientist Exploring the day-to-day routine in this new field in healthcare Semi-conductor laser technology The recent advancements Code to cure How bioinformatics and technology helped to develop a vaccine for COVID-19
- CRISPR-Cas9 discovery | Scientia News
Jennifer Doudna and Emmanuelle Charpentier were jointly awarded the Nobel Prize in Chemistry in the year 2020, for their major contributions in reducing the number of components in the CRISPR-Cas9 system. An outline of their discovery CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats) can be used, by removing, adding, or altering particular DNA sequences and may edit specific parts of the genome. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Who were the winners of the Nobel Prize in Chemistry in 2020? Last updated: 07/11/24 Published: 02/02/23 Jennifer Doudna and Emmanuelle Charpentier were jointly awarded the Nobel Prize in Chemistry in the year 2020, for their major contributions in reducing the number of components in the CRISPR-Cas9 system. An outline of their discovery CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats) can be used, by removing, adding, or altering particular DNA sequences and may edit specific parts of the genome. A four-part mechanism called the Cas9 endonuclease consists of two small molecules. By combining these two RNA molecules into a "single-guide RNA," by Jennifer Doudna and Emmanuelle Charpentier, the Cas9 endonuclease was redesigned into a more manageable two-component system that could locate and cut the DNA target defined by the guide RNA- CRISPR/Cas9 ‘genetic scissors’. It can silence or activate genes as well as add or remove others. The Nobel Prize in Chemistry was awarded in 2020 in recognition of this contribution. Some advantages of this technology: quick easy adaptable innovative, unique Disadvantages: distribution challenges extremely conservative ethical issues some off-target effects some negative outcomes Significance of this discovery This discovery is important in preventing disease and is such a revolutionary tool. It does not just help humans but also animals, plants and even bacteria. CRISPR has already been applied to various disorders, such as cancer and infectious diseases. By making it possible to make changes to the target cells' genomes, which were previously challenging to do, the procedure offers a new perspective on biological treatment and demonstrates how important this tool is. But since this technology is still recent, scientists must develop straightforward processes and techniques to monitor and test its progress, performance, and outcomes. Jennifer Doudna Hailing from Washington DC., USA, Jennifer Doudna was born in 1964. As a professor of biochemistry, biophysics, and structural biology, Doudna’s main research focus is on RNA, and its variety of structures and functions. It was her research lab’s work that led to the discovery of CRISPR-Cas9 as an extraordinarily powerful tool to cut and edit the human genome to treat disease. This remarkable discovery was a decade ago in 2012, when Doudna and others were able to copy a bacterial system to create molecular scissors, in order to edit the genetic code. In October 2020, at the time of her being awarded the Nobel Prize in Chemistry, Doudna was affiliated to the University of Berkeley, in California. Emmanuelle Charpentier Coming from a French background, Emmanuelle Charpentier is a professor and researcher in microbiology, genetics, and biochemistry. Born in 1968, researcher Charpentier has made tremendous progress in her respective field. From being the director at the Berlin Max Planck Institute for Infection Biology in 2015, to founding her own independent research institute- the Max Planck Unit for the Science of Pathogens in the year 2018, and of course being jointly awarded the Nobel Prize in Chemistry in 2020; it is true that Charpentier has added new, valuable research in her work and has come a long way in her career. Why the CRISPR/ Cas9 system fascinates us We find CRISPR fascinating because as biological science students, we know this tool is vital for genetics and can help cure present incurable diseases such as sickle cell disease as well as cancer, showing what a revolutionary tool this is. It does not just help humans but also animals, plants and even bacteria showing how broad biology is and different fields can be linked to one another. Researchers are constantly coming up with new ways to use CRISPR-Cas9 gene editing technology to solve problems in the real world, such as epigenome editing, new cell and gene therapies, infectious disease research, and the conservation of endangered species. The advantages of this technology are that it is quick, easy and adaptable, but its disadvantages include distribution challenges, extremely conservative ethical issues, some off-target effects, and some negative outcomes. By making it possible to make changes to the target cells' genomes, which were previously challenging to do, the procedure offers a new perspective on biological treatment and demonstrates how important this tool is. Written by Jeevana Thavarajah, and Manisha Halkhoree Scientia News founder and managing director Related articles: Female Nobel prize winners in Chemistry and in Physics
- Potential vaccine for malaria | Scientia News
Malaria is a vicious parasitic disease spread through the bite of the female Anopheles mosquito, with young children being its most prevalent victim. In 2021, there were over 600,000 reported deaths, giving us an insight into its Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Could this new vaccine spell the end of malaria? Last updated: 20/01/25 Published: 01/02/23 Malaria is a vicious parasitic disease spread through the bite of the female Anopheles mosquito, with young children being its most prevalent victim. In 2021, there were over 600,000 reported deaths, giving us an insight into its alarming virulence. The obstacle in lessening malaria's disease burden is the challenge of creating a potent vaccine. The parasite utilises a tactic known as antigenic variation, where its extensive genetic diversity of antigens allows it to modulate its surface coat, allowing it to effectively evade the host immune system. However, unlike other variable malaria surface proteins, RH5, the protein required to invade red blood cells (RBC), does not vary and is therefore a promising target. Researchers at the University of Oxford have demonstrated various human antibodies that block the interaction between the RH5 malaria protein to host RBCs, providing hope for a new way to combat this deadly disease. The researchers have reported up to an 80% vaccine efficacy, surpassing the WHO's goal of developing a malaria vaccine with 75% efficacy. Therefore, this vaccine has the potential to be the world’s first highly effective malaria vaccine, and with adequate support in releasing this vaccine, we could be well on our way to seeing a world without child deaths from malaria. Written by Bisma Butt Related articles: Rare zoonotic diseases / mRNA vaccines
- Genetics 2 | Scientia News
Read articles delving into the universal genetic code: from specific examples of epigenetic modifications, to AI diagnosis, schizophrenia, and ancestry. Genetics Articles Read articles delving into the universal genetic code: from specific examples of epigenetic modifications, to AI diagnosis, schizophrenia, and ancestry. You may also like: Biology Why South Asian genes remember famine An example of epigenetic modification COMING SOON COMING SOON COMING SOON Previous
- Curriculum Vitae (CV) check | Scientia News
A CV entails a person's notable accomplishments. We check your CV for free! Our expert advisors offer to review your CV in a time-efficient manner, by providing quality feedback. Curriculum Vitae (CV) Looking to apply for a job after your graduation, internship, or placement? Read below our CV information and advice! What are CVs? A CV entails a person's notable accomplishments - for example, their education history, work experience, certifications, volunteering experience, projects, and more. They are normally made on Microsoft Word and should be one page long , however someone extremely experienced in their field of work may choose to make their CV as two pages. But isn't this a resumé? ... ... No. CVs contain a more comprehensive breakdown of education, work experience etc; a resum é is not as detailed. A resum é also excludes date of birth, address, and contact info, whereas a CV includes this. Why should you write a good CV? There are several reasons as to why you should write a good CV, with just a few listed below: Professionalism A well organised, polished CV reflects your attention to detail and makes you more likely to be considered by employers for the advertised job. First impression and employability Employers spend less than 9 seconds looking at a CV! Hence, a well-designed CV is important as it will make you stand out and increase chances of securing an interview. Career progression A CV is not only for getting a job. It shows how you have generally developed as an employee, from what new skills you have gained to the responsibilities you have picked up. Networking Having a strong CV will allow you to share your background in a quick and efficient matter at, for example, career fairs or industry events. How do I know if my CV is to the right standard? Read below to find out more. We can check your CV for free! 1. Style We will make sure your writing is coherent and flows in the correct way, such as in chronological order. We will also recommend fonts, font sizes, appropriate headings that employers prefer and more, as layout is incredibly important to consider. 2. Spelling, punctuation and grammar It is easy to make small errors that can be easily overlooked! However, we will proofread your work to make sure your sentences make sense whilst being straight to the point. 3. Sections to include More than one would think, some may include sections that are of no relevance to the employer or put lack of detail in the ones that matter most. We will help make sure you don't fall into this trap. 4. Helping you make a start It is completely normal to feel like you don't know where to start from, too! Our advisors can ask you personalised questions regarding your experience, education, and so on to give you a 'template' to work on. This can then be reviewed and personalised feedback will be given until you are satisfied. 5. Other neat tricks... There are some features of a CV that individuals may not focus on but employers actually look for (hint: super- and extracurricular). Find out more from us if you're interested! Example universities where some of our advisors attend/have graduated from: Queen Mary University of London, Imperial College London, University of Liverpool and so on. Some of these students have secured placements, internships, and jobs with companies such as GSK and STATIC St. Andrews ! Just like personal statements , our expert advisors offer to review your CV in a time-efficient manner, by providing feedback on the following: Fill the form out below and we will contact you* * Alternatively, you can email us at scientianewsorg@gmail.com . Please keep the subject as 'CVs'. Email Subject Your message Send Thanks for submitting!
- Physics Articles 2 | Scientia News
These articles range from astrophysics and space science to nuclear physics, harmonic motion, and thermodynamics; with insights on astro-archaelogy. Physics Articles These articles range from astrophysics and space science to nuclear physics, harmonic motion, and thermodynamics; with astro-archaelogy observations. You may also like: Maths, Technology , Engineering Chaco Canyon, New Mexico Cities designed to track the heavens. Article #1 in a series on astro-archaelogy The Anthropic Principle Science or God? This theory is explained by physics COMING SOON COMING SOON Previous
- COVID glossary | Scientia News
By no means is this an exhaustive list on all the terminology relating to the COVID-19 pandemic. For more information, please refer to the World Health Organisation (WHO) and the Centers for Disease Control and Prevention (CDC). AAdenovirus- a group of related viruses. They were first removed from human adenoid glands (found at the back of the throat), hence the name. Asymptomatic- where a person is infected by the virus but does not present any symptoms. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Glossary for COVID-19 terms Last updated: 23/01/25 Published: 28/12/22 Key terms By no means is this an exhaustive list on all the terminology relating to the COVID-19 pandemic. For more information, please refer to the World Health Organisation (WHO) and the Centers for Disease Control and Prevention (CDC). – A Adenovirus- a group of related viruses. They were first removed from human adenoid glands (found at the back of the throat), hence the name. Asymptomatic- where a person is infected by the virus but does not present any symptoms. Can still pass the virus and infection onto others. C Coronavirus- a group of related viruses that cause diseases in mammals and birds. Named after the crown-like spike protein on the virus’s surface- ‘corona’ in Latin for crown. COVID-19/ COVID – the disease that coronavirus causes D DNA- deoxyribonucleic acid, the cell’s code to life. DNA instructs how to make proteins, which are essential for function in the body. Double helix. E Epicentre- the central point of the virus outbreak. This changed during the COVID-19 pandemic depending on the variant of virus. Epidemic- an outbreak in a localised area at a particular time H Herd immunity- when enough people are protected against the disease, that it lends immunity to those who are not protected. Can achieve protection against the disease through either previous infection, and/ or vaccination. I Immunity- achieving immunity means to be protected from future infections by viruses, and bacteria for example. You can achieve immunity through either previous infection, and/ or vaccination. Immunosuppressed- the immune system is suppressed. In other words, people who are immunosuppressed have a reduced ability to fight diseases. Thus preventing them from being infected in the first place is of great importance. Infection- the unnormal invasion of microorganisms into the body. Some infections present symptoms- at least straight away- while others do not show any symptoms. L Lockdown- preventing people from leaving where they are, to stop the transmission and contain the virus in the COVID-19 pandemic. M Mass vaccination- vaccinating many people in a certain area at a particular time mRNA- messenger RNA (ribonucleic acid). Single helix. Acts as a go-between for DNA and the proteins that are being made. P Pandemic- a global, or national outbreak Protein- an important molecule. Used as a fuel source, a building block, a carrier among other things, in the human body. R Restrictions- impeding or hindering movement and travel during the COVID-19 pandemic, in order to contain the spread of the virus and curb transmission. S Shedding- (in biology) refers to viruses casting off viral particles which can then infect others Side effects- effects that are different and potentially harmful from the main, intended effects of a medication, treatment, or vaccine. Examples of some side effects: headaches, aches, pains, fever. Symptomatic- where a person is infected with the virus and does present symptoms. Can still pass the virus and infection onto others. Symptoms- the signs a person has been infected; this can be physical or mental. With COVID-19, you can show symptoms as symptomatic, or not present symptoms as asymptomatic, if infected. Examples of symptoms for COVID-19 include loss of taste and smell, a persistent cough, fever. T Transmission- how a particular disease, in this case coronavirus, is passed from one person to another. V Vaccination- the administration of vaccine into the body. Vaccine- a form of active immunity, where a weakened, live version of the infection agent is administered into the body. The immune system kicks in and destroys the infection agent, but not before taking note of the genetic material (e.g. mRNA or DNA from the protein) from the agent. The immune system will use this genetic material to ‘remember’ the infection next time it appears, so it can prepare a speedier, more efficient response. Vaccine hesitancy- uncertainty as to whether people should take the vaccine. This could be due to a variety of reasons: being unfamiliar with the vaccine and its contents, and/ or being distrusting of the government and those in the health organisation. Viral load- the amount of virus (or viral genetic material) a person has in their body at a particular time. A person not infected with the virus will have no viral load, whereas a person infected with the virus will have a much higher viral load. Virus- a microorganism. Some spread diseases as vectors, while some are ‘better’. To date, it is being argued whether viruses are alive or not. W Wuhan- Capital of Hubei Province in China. First epicentre of coronavirus. Written by Manisha Halkhoree Related article: The origins of COVID-19